Абелеве розширення
В абстрактній алгебрі абелеве розширення поля — розширення Галуа, для якого група Галуа є абелевою. Важливим частковим прикладом є циклічне розширення, для якого група Галуа є циклічною.
Наприклад розширення є абелевим. Його група Галуа складається з двох елементів і є абелевою. Нетривіальний автоморфізм переставляє місцями числа і
Натомість розширення не є абелевим. Дане поле є полем розкладу многочлена і його автоморфізми, що фіксують переставляють різні корені цього многочлена. Тому група Галуа цього розширення є симетричною групою порядку 3 і не є абелевою.
Довільне скінченне розширення скінченного поля є циклічним розширенням. Важливим прикладом абелевого розширення є циклотомічні (кругові розширення), що одержуються приєднанням до поля коренів з одиниці. У випадку поля раціональних чисел, внаслідок такого розширення одержуються кругові поля. Згідно з теоремою Кронекера — Вебера довільне абелеве розширення раціональних чисел є підполем деякого кругового поля.
Якщо поле містить первісний корінь з одиниці степеня n, то розширення одержане приєднанням до нього кореня степеня n з деякого елемента (розширення Куммера) є абелевим розширенням. Для загального випадку це твердження не є вірним.
Посилання
- Weisstein, Eric W. Abelian Extension(англ.) на сайті Wolfram MathWorld.