Граф Дюрера

Граф Дюрера неорієнтований кубічний граф з 12 вершинами і 18 ребрами. Граф названо ім'ям Альбрехта Дюрера, чия гравюра «Меланхолія» (1514) містила зображення так званого багатогранника Дюрера опуклого багатогранника, кістяком якого є граф Дюрера. Багатогранник Дюрера є одним з чотирьох можливих добре покритих простих опуклих багатогранників.

Багатогранник Дюрера

Багатогранник Дюрера комбінаторно еквівалентний кубу з двома зрізаними протилежними вершинами, хоча на малюнку Дюрера він, швидше, зображений як зрізаний ромбоедр або тригранний зрізаний трапецоїд[1]. Точні геометричні властивості намальованого Дюрером багатогранника є предметом академічних суперечок, у яких припускаються різні гіпотетичні значення (гострих) кутів від 72° до 82°[2].

Властивості графу

Граф Дюрера — це граф, утворений вершинами і ребрами багатогранника Дюрера. Граф є кубічним з обхватом 3 і діаметром 4. Оскільки граф є кістяком багатогранника Дюрера, його можна отримати, застосувавши перетворення трикутник-зірка протилежних вершин графу куба, або як узагальнений граф Петерсена . Як і будь-який інший граф опуклого багатогранника, граф Дюрера є вершинно 3-зв'язним простим планарним графом.

Граф Дюрера є добре покритим, що означає, що всі його найбільші незалежні множини мають однакове число вершин — чотири. Граф є одним з добре покритих кубічних багатогранних графів і одним з семи добре покритих 3-зв'язних кубічних графів. Іншими трьома добре покритими простими опуклими багатогранниками є тетраедр, трикутна призма і п'ятикутна призма[3][4].

Граф Дюрера є гамільтоновим з LCF-позначенням [-4,5,2,-4,-2,5;-][5]. Точніше, граф має рівно шість гамільтонових циклів, кожну пару яких можна відобразити в будь-яку іншу симетріями графу[6].

Симетрії

Група автоморфізмів як графу Дюрера, так і багатогранника Дюрера (у вигляді зрізаного куба або у формі, наведеній Дюрером) ізоморфна діедральній групі порядку 12.

Галерея

Примітки

  1. Вебер, 1900.
  2. Вайцель, 2004.
  3. Кэмпбелл, Пламмер, 1988.
  4. Кэмпбелл, Эллингхэм, Ройл, 1993.
  5. Кастанья і Прінс (Кастанья, Прінс, (1972)) приписують доведення гамільтоновості класу узагальнених графів Петерсена, до якого належить граф Дюрера, тезам дисертації 1968 року Робертсона (G. N. Robertson) з університету Ватерлоо.
  6. Швенк, (1989).

Література

  • S. R. Campbell, M. N. Ellingham, Gordon F. Royle. A characterisation of well-covered cubic graphs // Journal of Combinatorial Mathematics and Combinatorial Computing.  1993. Т. 13 (17 лютого). С. 193–212.
  • Stephen R. Campbell, Michael D. Plummer. On well-covered 3-polytopes // Ars Combinatoria.  1988. Т. 25, вип. A (17 лютого). С. 215–242.
  • Frank Castagna, Geert Prins. Every Generalized Petersen Graph has a Tait Coloring // Pacific Journal of Mathematics.  1972. Т. 40 (17 лютого). DOI:10.2140/pjm.1972.40.53.
  • Allen J. Schwenk. Enumeration of Hamiltonian cycles in certain generalized Petersen graphs // Journal of Combinatorial Theory.  1989. Т. 47, вип. 1 (17 лютого). С. 53–59. — (Series B). DOI:10.1016/0095-8956(89)90064-6.
  • P. Weber. Beiträge zu Dürers Weltanschauung—Eine Studie über die drei Stiche Ritter, Tod und Teufel, Melancholie und Hieronymus im Gehäus. — Strassburg, 1900. — 17 лютого. (як процитовано у Вайцеля (Вайцель, (2004)).
  • Hans Weitzel. A further hypothesis on the polyhedron of A. Dürer's engraving Melencolia I // Historia Mathematica.  2004. Т. 31, вип. 1 (17 лютого). С. 11–14. DOI:10.1016/S0315-0860(03)00029-6.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.