ГАМКA-рецептор

ГАМКA-рецептор — група клітинних рецепторів, ліганд-залежних хлорних іонних каналів, відчинення пори яких керуються молекулами гамма-аміномасляної кислоти, основного гальмівного нейромедіатора в мозку ссавців, зокрема людини. Це один з 3 підтипів ГАМК-рецепторів та одна з груп надродини рецепторів з цистеїновою петлею. Кожен ГАМКA-рецептор утворюється п'ятьма білковими субодиницями, які кодуються окремими генами. Ці рецептори розташовані переважно в синапсах між нейронами головного мозку. Відкриття іонного каналу ГАМКA-рецептора призводить до входу іонів хлору до зрілого нейрона, зниження значення його мембранного потенціалу (гіперполяризації) та гальмування електричної активності. Мутації в генах, що кодують субодиниці ГАМКA-рецепторів призводять до низки захворювань, зокрема деяких видів епілепсії. Ці рецептори є мішенями деяких фармацевтичних препаратів, як наприклад барбітурати та бензодіазепіни.[1][2][3]

Структура

Структура субодиниці ГАМКA-рецептора. Ліворуч — топологія субодиниці. Великий зовнішньоклітинний N-кінцевий домен несе характерний цистеїновий місток (Cys-Cys), що присутній у всіх іонних каналах надродини, та місця зв'язування агоністів та модуляторів. Трансмембранні домени показані у вигляді циліндрів (1-4) з доменом ТМ2, що вистилає іонний канал (помаранчевий). Найбільша внутрішньоклітинна петля (між доменами ТМ3 та ТМ4) несе місця зв'язування численних внутрішньоклітинних модуляторів та сайти, що беруть участь в стабілізації та фіксації рецептора в клітинній мембрані. У відсотках показані відносні пропорції молекули субодиниці рецептора, що знаходяться по різні боки плазматичної мембрани та всередині неї. Праворуч четвертинна структура рецептора. Пентамерний комплекс субодиниць формує нативний ГАМКA-рецептор, при цьому домени ТМ2 кожної субодиниці розташовані так, що формують іонний канал, яким проходять аніони Cl- та НСО3- після активації рецептора агоністом (ГАМК).

Іонотропні ГАМКA-рецептори вперше були виділені з мозку бика в 1987 році, і їхня структура була тоді визначена як така, що складається з двох субодиниць. Але пізніше завдяки методикам молекулярного клонування було виділено велику кількість різних субодиниць, що можуть входити до складу цього рецептора. Перелік субодиниць включає сім різних родин, багато з яких налічують більш ніж один ген. Це родини α (6 ізоформ), β (три ізоформи), γ (три ізоформи), а також δ, ε, π та θ (одна ізоформа в кожній). Гомологія (збіжність) в послідовностях амінокислот між ізоформами однієї родини досягає щонайменше 70 %, в той час як між представниками різних родин — менше ніж 40 %; докладніше про властивості рецепторів, що утворюються різними комбінаціями субодиниць, див. у таблиці 1.[4]

Кожний функціональний ГАМКA-рецептор являє собою гетеропентамер, де всі п'ять субодиниць мають однакову третинну структуру. Ця структура полягає в наявності великого N-кінцевого домену, характерною ознакою котрого для цього типу рецепторів є дисульфідний місток між двома залишками цистеїну (так звана «cys-cys-петля») — риса, притаманна всім іонно-канальним рецепторам. Також на N-кінцевому домені знаходяться численні місця зв'язування різноманітних лігандів та ділянка, що активує рецептор при зв'язуванні з ним молекул ГАМК[5].

За N-кінцевим доменом ідуть чотири трансмембранних домени (ТМ1-4), серед яких ТМ2 створює внутрішню вистілку пори іонного каналу. Між доменами ТМ3 та ТМ4 знаходиться велика внутрішньоклітинна ділянка, що містить сайти, які фосфорилюються за допомогою протеїнкіназ, а також місця приєднання численних якірних та регуляторних білків[6]. За доменом ТМ4 розташований дуже короткий С-кінцевий домен. Загалом, кількість амінокислотних залишків, котрі складають третинну структуру однієї субодиниці, дорівнює приблизно 400[5](англ.).

Велика кількість типів субодиниць ГАМКA-рецептора (загалом 16) призводить до великої кількості структурно відмінних ГАМКA-рецепторів, що можуть бути теоретично ними сформовані. Але практично in vivo рівень різноманіття функціональних ГАМКA-рецепторів є набагато меншим. Завдяки комплексним молекулярно-біологічним дослідженням було встановлено, які саме комбінації субодиниць можуть формувати функціональні ГАМКA-рецептори — див. Таблицю 1. При цьому треба завважити, що не всі штучно синтезовані нормальні функціональні форми рецепторів, наведені в таблиці, на початок 2000-х років знайдені в мозку[7][8].

Таблиця 1. Форми ГАМКA-рецепторів, знайдені в нервовій системі

Комбінація субодиницьРозповсюдження та властивості
α1βγ2Найзвичайніша ізоформа, ~40% від усіх ГАМКA-рецепторів; широко розповсюджена в хімічних синапсах нервової системи
α2βγ2Досить звичайна, також широко розповсюджена
α3βγ2Не така звичайна як дві попередні, широко розповсюджена
α4βγ2Відносно рідкісна, знайдена в гіпокампі та таламусі. Можливо, є позасинаптичним рецептором
α5βγ2Відносно рідкісна, знайдена в гіпокампі
α6βγ2Знайдена лише в гранулярному шарі мозочка та в нервових клітинах равлику вуха. Можливо, є позасинаптичним рецептором
α1α2-6βγ2Рецептори, що містять дві різні форми α-субодиниці, вірогідно, є дуже рідкісними, якщо взагалі така комбінація здатна формувати функціональний рецептор. Про їхнє існування можна стверджувати, ґрунтуючись на результатах імунних реакцій з використанням селективних сироваток
α2α3-6βγ2Відносно рідкісна, якщо взагалі здатна формувати функціональні рецептори.
α3α4-6βγ2Відносно рідкісна, якщо взагалі здатна формувати функціональні рецептори.

Дослідження за допомогою кріоелектронної мікроскопії, проведені наприкінці 2010-х років, дозволили отримати зображення субодиниць рецептору в дуже високій роздільній здатності. Також було уточнено місця приєднання різноманітних лігандів рецептору[9].

У комах, зокрема дрозофіли, виявлено 3 гени, що кодують різні ізоформи ГАМКA-рецепторів[10]:

  • Rdl (англ. resistance to dieldrin)
  • Grd (англ. GABA and glycine-like receptor of Drosophila)
  • Lcch3 (англ. ligand-gated chloride channel homologue3)
Тримірна структура рецептора. Top — вигляд згори (паралельно до мембрани), Front — вигляд збоку (перпендикулярно до мембрани)

Функціональні властивості

Дослідження рекомбінантних ГАМКA-рецепторів показали, що функціональні властивості ГАМКA-рецепторів багато в чому визначаються складом субодиниць рецептора. Загалом, наступні закономірності можуть вважатись доведеними:

  • Відсутність β-субодиниці в складі рецептора помітно зменшує, або навіть повністю блокує, чутливість до ГАМК;
  • Створення комбінацій α-β збільшує чутливість до ГАМК, але отримані таким чином канали мають відносно низьку провідність (12-18 pS). Також ці рецептори нечутливі до бенздіазепінів, і можуть бути інгібійованими за допомогою низьких концентрацій Zn2+ (~100-200 нМ);
  • Залучення γ-субодиниці, що призводить до формування комбінацій α-β-γ, незначно знижує чутливість до ГАМК порівняно з α-β — рецепторами; також таким рецепторам притаманна алостерична модуляція бенздіазепінами, і помітно менша чутливість до іонів Zn2+ (~200-500 μМ). Провідність іонного каналу у рецепторів з таким складом субодиниць приблизно на 30 % вища (28-31 pS), аніж у форм α-β. Наявність субодиниці γ2, окрім того, стимулює формування кластерів (тісних груп) рецепторів на постсинаптичній мембрані хімічних синапсів.

ГАМКА-рецептори комах відрізняються за фармакологічними властивостями від рецепторів ссавців. Вони часто є мішенями для інсектицидів.[10]

Таблиця 2. Властивості ГАМКA-рецепторів

Природний агоніст ГАМК
Селективний агоніст Ізогувацин
Антагоніст Пікротоксин
Селективний антагоніст Бікукуллін[11]
Модулятори: бенздіазепіни Потенціювання
Барбітурати Потенціювання
Іони Zn2+2+ (IC50) Інгібіювання (αβ — 100-500nM; αβγ — 100-500mM)
Нейростероїди Потенціювання/інгібіювання
Ефективність ГАМК (ЕС50) 2-30μM
Іони, що проходять через канал Cl- та НСО3-
Активація рецептора Швидка (мілісекунди)
Десенситизація Швидка та глибока
Провідність каналу 25-32pS


Місце зв'язування ГАМК

Місця зв'язування ГАМК та бенздіазепінів на ГАМКА-рецепторі. Пентамерна структура протеїну демонструє розташування α, β та γ-субодиниць в більшості ГАМКA-рецепторів. Ділянки зв'язування агоністів (сині) формуються на контактній поверхні між субодиницями різних родин, включаючи в себе кілька амінокислотних залишків як з α, так і з β субодиниць. Аналогічно сформована єдина ділянка, де зв'язуються бенздіазепіни (червоний) між α та β субодиницями. Показані амінокислотні залишки, котрі долучені до формування вказаних ділянок зв'язування.

На початок 2000-х вважалося, що до складу ділянки зв'язування ГАМК на ГАМКA-рецепторі входять амінокислотні залишки як з α-, так і з β-субодиниці. При цьому в складі β-субодиниці для формування ділянки зв'язування ГАМК критичними є два домени, що містять амінокислоти YGYT (однолітерний код, див статтю «амінокислота») — залишки 157—160 субодиниці β2 (тут і далі літера позначає однолітерний код амінокислоти, цифра — номер залишку в ланцюгу білкової молекули, починаючи від N-кінця); і, також, YGSY — залишки 202—205. Втім, згідно з деякими теоріями[якими?], останній домен може бути асоційованим з механізмом конформаційної передачі в процесі відкриття іонного каналу, а не власне з ділянкою зв'язування ГАМК. Перераховані вище залишки взаємодіють із залишками F64, R66, S68, R120 субодиниці α1 — таким чином, ділянка зв'язування ГАМК сформована на поверхні контакту α- та α-субодиниць[12].

Алостерична модуляція: бенздіазепінова ділянка

Дослідження рекомбінантних рецепторів показали, що одночасна наявність α- та γ-субодниць є необхідною для можливості алостеричного регулювання ГАМКA-рецептора за допомогою бенздіазепінів. При цьому були ідентифіковані декілька критично важливих амінокислотних залишків Н101 в α1-субодиниці та F77 в γ2-субодиниці — які впливають на активність зв'язування[13].

Окрім того, важливу роль відіграє залишок Т142 в субодиниці γ2, котрий впливає на ефективність бенздіазепінів. Цікаво, що залишок F77 в субодиниці γ2 є гомологічним до F64 в субодиниці α1, що завдає активного впливу на ефект ГАМК. Таким чином, сайт зв'язування бенздіазепінів, локалізований на поверхні між субодиницями α та γ, може бути таким, що еволюційно виник із ділянки зв'язування агоністу (тобто ГАМК)[8].

Набір субодиниць, що формує нативний рецептор, особливо що стосується різних ізоформ γ та α субодиниць, може завдавати вплив і на фармакологію бенздіазепінів. Ліганди бенздіазепінового ряду можуть діяти як часткові або повні агоністи, потенціюючи дію ГАМК; як антагоністи, котрі не мають жодного впливу на дію ГАМК, але запобігають дії агоністів-бенздіазепінів; та як часткові або повні зворотні агоністи, котрі інгібіюють активацію рецептора задопомогою ГАМК, діючи на бенздіазепінову ділянку. Ефекти зворотніх агоністів можуть бути інгібійовані антагоністами бенздіазепінового ряду. Рецептори, що містять α1- та βіγ2 субодиниці (де і=1-3), мають високу спорідненість до бенздіазепінів, діазепаму, CL218872, та золпідему (часто називаються рецепторами або лігандами першого типу). CL218872 та золпідем мають набагато нижчу спорідненість до рецепторів, що містять α23 та α5βіγ2 субодиниці (рецептори другого типу). Наступна група рецепторів, α4- та α6βіγ2 — рецептори, є діазепам-нечутливою, але здатною зв'язувати частковий зворотний агоніст, Ro-15-4513. У субодиницях α4 та α6 відсутній критично важливий для α1 амінокислотний залишок Н101, котрий замінений на агрінін. Такі діазепам-нечутливі рецептори називаються рецепторами третього типу.[13][14]

β-субодиниці та іонний канал

β-субодиниці рецептора спочатку вважались фармакологічно пасивними; тим не менше, нещодавні дослідження[які?] показали, що їхня наявність у складі нативного рецептора є критично необхідною умовою для його функціонування, а різні конформації β-субодиниць можуть впливати на ефект лігандів, які з цими субодиницями безпосередньо не зв'язуються (наприклад, на ефекти лореклезола). В усіх відомих на теперішній час випадках впливу на ефекти лігандів ГАМКA-рецептора з боку його β-субодиниць різниця в рецепторній відповіді зумовлена мутаціями (тобто замінами) одного і того ж амінокислотного залишку — на позиції 290 в сегменті ТМ2. У випадку β1-субодиниці це місце займає серин, і ефект лореклезолу при цьому не змінюється або інгібіюється; у випадку β2-субодиниці на цьому місці знаходиться аспарагін, що помітно потенціює (збільшує) ефект лореклезолу і ряду інших сполук.

Інший залишок, що сильно впливає на чутливість αβ-вмісних ГАМКA-рецепторів — це Н267, що знаходиться на зовнішній частині домену ТМ2. Цей залишок гістидину формує частину ділянки зв'язування Zn2+, роблячи рецептор чутливим до інгібіювання іонами цинку в концентрації близько 100 нМ. Локалізація цього амінокислотного залишку всередині хлорного каналу рецептру і той факт, що двовалентний катіон цинку може проникати в канал, пристосований для проходження одновалентних аніонів, незалежно від того, активований рецептор чи ні, є ознаками локалізації іон-селективної частини рецепторної молекули та механізму відкриття каналу на протилежному кінці рецептора.

Медичне значення

Мутації в генах субодиниць ГАМКА-рецепторів, а також інші порушення роботи цих білків призводять до низки захворювань, зокрема епілепсії, тривожних розладів, алкоголізму[15].

У клініці використовуються активатори цих рецепторів. Серед активаторів популярні транквілізатори, що належать до групи бензодіазепінів (алпразолам, гідазепам, діазепам, лоразепам, хлордіазепоксид тощо) та барбітуратів (фенобарбітал, тіопентал натрію тощо). Також активаторами рецепторів є пропофол, мусцимол тощо. Їх приймають як заспокійливі засоби, для розслаблення м'язів тощо. Інгібітори ГАМКА-рецепторів як бікукулін, габазін та інші практично не мають клінічного застосування, оскільки є потужними конвульсантами.

Див. також

Примітки

  1. Macdonald, R.L.; Gallagher, M.J. (2014). GABAA Receptor Channels; Properties and Regulation. с. 375–382. doi:10.1016/B978-0-12-385157-4.00042-7.
  2. Bormann, Joachim (2000). The ‘ABC’ of GABA receptors. Trends in Pharmacological Sciences 21 (1): 16–19. ISSN 01656147. doi:10.1016/S0165-6147(99)01413-3.(англ.)
  3. Sigel, Erwin; Steinmann, Michael E. (2012). Structure, Function, and Modulation of GABAA Receptors. Journal of Biological Chemistry 287 (48): 40224–40231. ISSN 00219258. doi:10.1074/jbc.R112.386664.(англ.)
  4. Jones, A.; Korpi, E. R.; McKernan, R. M.; Pelz, R.; Nusser, Z.; Mäkelä, R.; Mellor, J. R.; Pollard, S.; Bahn, S.; Stephenson, F. A.; Randall, A. D.; Sieghart, W.; Somogyi, P.; Smith, A. J. H.; Wisden, W. (1997). Ligand-Gated Ion Channel Subunit Partnerships: GABAAReceptor α6Subunit Gene Inactivation Inhibits δ Subunit Expression. The Journal of Neuroscience 17 (4): 1350–1362. ISSN 0270-6474. doi:10.1523/JNEUROSCI.17-04-01350.1997.(англ.)
  5. Smith, Geoffrey B.; Olsen, Richard W. (1995). Functional domains of GABAA receptors. Trends in Pharmacological Sciences 16 (5): 162–168. ISSN 01656147. doi:10.1016/S0165-6147(00)89009-4.
  6. Moss, Stephen J.; Smart, Trevoe G. (1996). Modulation Of Amind Acid-Gated Ion Channels By Protein Phoshorlation 39. с. 1–52. ISSN 00747742. doi:10.1016/S0074-7742(08)60662-5.(англ.)
  7. Fritschy, Jean-Marc; Mohler, Hanns (1995). GABAA-receptor heterogeneity in the adult rat brain: Differential regional and cellular distribution of seven major subunits. The Journal of Comparative Neurology 359 (1): 154–194. ISSN 0021-9967. doi:10.1002/cne.903590111.(англ.)
  8. Rabow, Lois E.; Russek, Shelley J.; Farb, David H. (1995). From ion currents to genomic analysis: Recent advances in GABAA receptor research. Synapse 21 (3): 189–274. ISSN 0887-4476. doi:10.1002/syn.890210302.(англ.)
  9. Kasaragod, Vikram Babu; Schindelin, Hermann (2019). Structure of Heteropentameric GABAA Receptors and Receptor-Anchoring Properties of Gephyrin. Frontiers in Molecular Neuroscience 12. ISSN 1662-5099. doi:10.3389/fnmol.2019.00191.(англ.)
  10. Hosie, Alastair; Sattelle, David; Aronstein, Kate; ffrench-Constant, Richard (1997). Molecular biology of insect neuronal GABA receptors. Trends in Neurosciences 20 (12): 578–583. ISSN 01662236. doi:10.1016/S0166-2236(97)01127-2.(англ.)
  11. Feigenspan, Andreas; Wässle, Heinz; Bormann, Joachim (1993). Pharmacology of GABA receptor CI− channels in rat retinal bipolar cells. Nature 361 (6408): 159–162. ISSN 0028-0836. doi:10.1038/361159a0.(англ.)
  12. Whiting, Paul J.; McKernan, Ruth M.; Wafford, Keith A. (1995). Structure and Pharmacology of Vertebrate GABAA Receptor Subtypes 38. с. 95–138. ISSN 00747742. doi:10.1016/S0074-7742(08)60525-5.(англ.)
  13. Rudolph, Uwe; Crestani, Florence; Benke, Dietmar; Brünig, Ina; Benson, Jack A.; Fritschy, Jean-Marc; Martin, James R.; Bluethmann, Horst та ін. (1999). Benzodiazepine actions mediated by specific γ-aminobutyric acidA receptor subtypes. Nature 401 (6755): 796–800. ISSN 0028-0836. doi:10.1038/44579.
  14. Korpi, Esa R; Gründer, Gerhard; Lüddens, Hartmut (2002). Drug interactions at GABAA receptors. Progress in Neurobiology 67 (2): 113–159. ISSN 03010082. doi:10.1016/S0301-0082(02)00013-8.(англ.)
  15. Шуба, 2010, с. 65.

Джерела

Посилання

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.