PrimeGrid

PrimeGrid — проєкт добровільних розподілених обчислень на платформі BOINC і PRPNet, метою якого є пошук простих чисел різного виду. Проєкт стартував 12 червня 2005 року.

PrimeGrid
Тип розподілені обчислення
добровольчі обчислення і BOINC Projectd
Автор(и) Rytis Slatkevičius
Перший випуск 12 червня 2005 (2005-06-12)
Апаратна платформа Intel x86, x86_64 CPU, AMD x86_64 CPU, Nvidia OpenCL/CUDA, ATI OpenCL
Платформа BOINC, PRPNet, Genefer, LLR, PFGW
Операційна система Microsoft Windows, Linux, Mac OS 10.5+
Вебсайт primegrid.com

 PrimeGrid у Вікісховищі

Основна мета проєкту — нести задоволення пересічному користувачу від знаходження простих чисел. Другою метою PrimeGrid є надання відповідних навчальних матеріалів про прості числа.

І нарешті, прості числа грають центральну роль в криптографічних систем, які використовуються для комп'ютерної безпеки. Через вивчення простих чисел можна показати, скільки вимагається обчислень, щоб зламати код шифрування і таким чином визначити, чи є поточні схеми безпеки достатньо безпечними.

Участь у проєкті PrimeGrid можлива у два способи: через BOINC і через Project Staging Area (PSA)

Історія проєкту

2005 рік

Проєкт започатковано 12 червня 2005 року приблизно о 14:00 UTC. Message@Home (тепер PrimeGrid) відкрив реєстрацію для 50 перших користувачів. Проєкт стартував на домашньому лептопі Rytis Slatkevičius.

Message@Home було розроблено як тестовий проєкт для PerlBOINC у спробі реалізувати BOINC сервер мовою програграмування . Першочерговою метою проєкту на PerlBOINC було отримати короткі завдання (WU) із стандартних постійним результатом. Першим проєктом був Message7, в якому ми намагалися за допомогою прямого перебору відновити повідомлення, зашифроване за допомогою md5. У серпні 2005 до проєкту було долучено застосунок RSA 640 Factoring Challenge. Подібно до Message7 у цьому проєкті ми намагалися прямим перебором віднайти дільник для 640 цифрового RSA ключа. Message7 було припинено. 1 вересня 2005 року після невеличкої наради було обрано нову назву для проєкту, PrimeGrid було обрано з варіації PrimeGrid@Home, що була запропонована користувачем на ім'я Heffed. За це він отримав 999 очок. :)

У листопаді 2005 зусиллями іншого проєкту було факторизовано RSA 640, отже PrimeGrid рушив на штурм RSA 768. Оскільки шанси на факторизацію залишалися нескінченно малими, подальший розвиток залишено для PerlBOINC.

2006 рік

У березні 2006 проєкт RSA 768 було перервано для запуску нового, PrimeGen. У цьому проєкті ми намагалися побудувати базу послідовних простих чисел, що на деякий час навернуло PrimeGrid на стежину пошуку простих чисел. Вторинною метою залишалась допомога RSA Factoring Challenges. Однак, незабаром з'ясувалося, що ці зусилля теж мають нескінченно малі шанси на успіх. Тим не менш пошук проєкту, гідного розподілених обчислень, було продовжено.

В червні 2006 розпочався діалог з ведучими проєкту Riesel Sieve із пропозицією перенести їхній проєкт на рейки BOINC. Rytis надавав підтримку PerlBOINC і команда Riesel Sieve успішно започаткувала їхній відсів (sieve), так само як застосунок LLR для пошуку простих чисел. У співпраці з Riesel Sieve PrimeGrid вдалось реалізувати застосунок LLR в партнерстві з іншими проєктом з пошуку простих чисел, Twin Prime Search. У листопаді 2006, підпроєкт TPS LLR було офіційно запущено в PrimeGrid.

2007 рік

Менш ніж за два місяці, у січні 2007 рекордну пару простих чисел-близнюків було знайдено в початковому ручному проєкті. PrimeGrid та TPS продовжили пошук ще більших пар простих-близнюків.

Літо 2007 виявилось досить спекотним, адже саме тоді було запущено пошук простих Cullen та Woodall. Восени, завдяки партнерським відносинам з Prime Sierpinski Problem і проєктом 321, ще більше пошуків простих було додано. Додатково було додано 2 відсіва: Prime Sierpinski Problem об'єднаний відсів, що включає підтримку відсіву за проблемою Seventeen or Bust; а також комбінований Cullen/Woodall відсів:

  • у липні 2007 року розпочато підпроєкт Woodall LLR.
  • у серпні 2007 року розпочато підпроєкт Cullen LLR.
  • 15 вересня 2007 року розпочато об'єднаний Cullen/Woodall Sieve.
  • 13 жовтня 2007 року розпочато підпроєкт PSP Sieve.
  • 18 листопада 2007 року розпочато підпроєкт 321 LLR.
  • 11 грудня 2007 року розпочато підпроєкт PSP LLR.

Восени 2007 PrimeGrid мігрував деякі системи з PerlBOINC до стандартного програмного забезпечення BOINC. Тим не менш, багато з сервісів до цього часу залишаються на базі PerlBOINC.

2008 рік

  • 29 лютого 2008 року встановлено співпрацю з Proth Search.
  • 15 березня 2008 року розпочато серію челенджів. Встановлено рекорд одного дня — понад 820К очок.
  • 13 квітня 2008 року Project Staging Area додано задля допомоги у адаптації нових застосунків для BOINC.
  • 10 березня 2008 року завершено підпроєкт PrimeGen.
  • 28 серпня 2008 року чат Meebo додано до форуму.
  • 26 грудня 2008 року розпочато підпроєкт AP26.

2009 рік

  • У лютому 2009 року PrimeGrid товаришує з 12121 Search у пошуку простих форм 121·2n−1 та 27·2n−1. PrimeGrid додає форму +1 і розпочинає пошук усіх чотирьох форм у підпроєкті 27121 Search.
  • 12 травня 2009 року розпочато Factorial Prime Search.
  • 3 серпня 2009 року — в PrimeGrid введено систему бейджів.
  • 16 серпня 2009 року — розпочато Sophie Germain Prime Search.
  • 16 вересня 2009 року PrimeGrid долучається до підпроєктів Seventeen or Bust задля розв'язання проблеми Серпинського.
  • 20 жовтня 2009 року випущено ppsieve для PPSE sieve, що у 6 разів швидший за попередній.
  • 5 листопада 2009 року розпочато Generalized Fermat Prime Search.
  • 8 листопада 2009 року з'явилась надія на появу застосунку для GPU в PrimeGrid. Розпочато розробку та тестування.
  • У грудні 2009 року додано підтримку CUDA для AP26.

2010 рік

  • 1 лютого 2010 року офіційно розпочинається співпраця з Seventeen or Bust заради розв'язання проблеми Серпінського.
  • 7 березня 2010 року відновлено підпроєкт The Riesel Problem з TRP (Sieve).
  • 9 березня 2010 року розпочато тестування CUDA в Proth Prime Sieve.
  • 19 березня 2010 року розпочато підпроєкт extended Sierpinski problem.
  • 21 березня 2010 року розпочато підпроєкт The Riesel Problem (LLR).

2011 рік

  • На початку січня 2011 року розпочалась співпраця PrimeGrid з Sierpinski/Riesel Base 5 Project. Підпроєкт SR5 було розпочато в PRPNet у тестовому режимі.
  • 22 квітня 2011 року призупинено підпроєкт 321 Prime Search (Sieve).
  • 1 жовтня 2011 року в PRPNet розпочато підпроєкт The dual Sierpinski problem (Five or Bust).

2012 рік

На початку січня 2012 програма GeneferCUDA була портована з клієнта PRPNet до BOINC. Почавши у статусі тестового, дуже швидко Genefer набув статусу офіційного підпроєкту. Протягом лише першого місяця у проєкті було віднайдено 2 нових простих числа форми General Fermat Number (GFN).

2013 рік

  • Наприкінці січня 2013 року відбулась міграція проєкту PrimeGrid на новий сервер.
  • У лютому 2013 року усі LLR додатки отримали підтримку AVX для 64-бітних платформ.
  • У травні 2013 року введено нову систему бейджиків.
  • 28 травня 2013 року підпроєкт PPS-Sieve отримав підтримку OpenCL для Mac/ATI.
  • Наприкінці червня 2013 року введено систему бонусного преміювання за участь у проєктах із перевірки гіпотез SR5, TRP, PSP і SoB (+10 %) та підпроєктів з довготривалими завданнями: 321, TRP-LLR (+10 %), CUL, WOO (+20 %), PSP (+35 %), SoB, GFN-WR (+50 %).
  • У вересні 2013 року додатки GFN отримали підтримку AVX та OpenCL.

2014 рік

  • У травні 2014 року розпочато повторну перевірку в BOINC результатів підпроєкту SR5, отриманих в PRPNet.
  • На початку червня 2014 року підпроєкт Extended Sierpinski Problem портовано з PRPNet до BOINC.
  • 29 червня 2014 року розпочато підпроєкт ESP Sieve — підпроєкт «сіялка» для підпроєкту ESP LLR.
  • 18 липня 2014 року підпроєкт PPS-MEGA портовано з PRPNet до BOINC.

2015 рік

  • У жовтні 2015 року підпроєкти GFN 32768, GFN 65536, GFN 131072 (Low) і GFN 131072 (Mega) портовано з PRPNet до BOINC, а у листопаді — GFN 262144, GFN 524288 та GFN 1048576.

2016 рік

  • У вересні 2016 року розпочато підпроєкт AP27.
  • У жовтні 2016 року розпочато підпроєкт GCW (Sieve).

2017 рік

  • У квітні 2017 року розпочато підпроєкт GCW (LLR).
  • 25 квітня 2017 року завершено підпроєкт TRP (Sieve).
  • У квітні 2017 року в PRPNet призупинено підпроєкти Wall-Sun-Sun і Wieferich.

2018 рік

  • Наприкінці січня 2018 року зупинено видачу завдань GFN-15 для CPU. Завдання GFN-15 стали виключно GPU-сумісні.

2019 рік

  • У лютому 2019 року розпочато підпроєкт Do You Feel Lucky?.
  • 1 травня 2019 року завершено підпроєкт GCW (Sieve).
  • У травні 2019 року усі LLR додатки отримали підтримку AVX-512.
  • 6 вересня 2019 року розпочато підпроєкт Fermat Divisor Search.

2020 рік

  • 1 лютого 2020 року зупинено видачу завдань GFN-16 для CPU. Завдання GFN-16 стали виключно GPU-сумісні.
  • 4 листопада 2020 року завершено підпроєкт 321 Sieve.
  • У листопаді 2020 року розпочато підпроєкт Wieferich and Wall-Sun-Sun Prime Search.

2021 рік

  • У березні 2021 року завершено підпроєкт Fermat Divisor Search.

Визначні дати

  • 12.06.2005 — народився Message@Home з підпроєктом Message7, у якому було відкрито реєстрацію для перших 50 користувачів
  • 01.09.2005 — Message@Home змінює назву на PrimeGrid
  • 07.08.2007 — в PrimeGrid знайдено найбільше відоме просте Вудала: 2013992·22013992−1
  • 20.08.2007 — в PrimeGrid знайдено найбільше відоме просте Вудала: 2367906·22367906−1
  • 21.12.2007 — в PrimeGrid знайдено найбільше відоме просте Вудала: 3752948·23752948−1
  • 20.04.2009 — в PrimeGrid знайдено найбільше відоме просте Каллена: 6328548·26328548+1
  • 25.07.2009 — в PrimeGrid знайдено найбільше відоме просте Каллена: 6679881·26679881+1
  • 07.12.2009 — в PRPNet знайдено найбільше відоме узагальнене просте Вудала: 563528·13563528−1
  • 12.04.2010 — в PrimeGrid знайдено першу відому арифметичну прогресію 26 простих чисел: 43142746595714191+23681770*23#*n для n=0..25
  • 04.10.2010 — в PRPNet знайдено найбільше відоме факторіальне просте: 94550!−1
  • 14.12.2010 — в PRPNet знайдено найбільше відоме факторіальне просте: 103040!−1
  • 20.12.2010 — в PRPNet знайдено найбільше відоме прайморіальне просте: 843301#−1
  • 08.02.2011 — в PRPNet знайдено найбільше відоме узагальнене просте Ферма: 145310262144+1
  • 24.02.2011 — в PRPNet знайдено найбільше відоме узагальнене просте Вудала: 404882·43404882−1
  • 11.06.2011 — в PRPNet знайдено найбільше відоме факторіальне просте: 110059!+1
  • 22.06.2011 — в PrimeGrid знайдено найбільший відомий дільник числа Ферма: 9·22543551+1 ділить F(2543548)
  • 29.10.2011 — в PRPNet знайдено найбільше відоме узагальнене просте Ферма: 361658262144+1
  • 19.11.2011 — в PRPNet знайдено найбільше відоме узагальнене просте Ферма: 75898524288+1
  • 25.12.2011 — в PrimeGrid знайдено найбільшу відому пару простих−близнюків: 3756801695685·2666669±1
  • 29.01.2012 — в PRPNet знайдено найбільше відоме узагальнене просте Каллена: 427194·113427194+1
  • 28.02.2012 — в PRPNet знайдено найбільше відоме прайморіальне просте: 1098133#−1
  • 09.04.2012 — в PrimeGrid знайдено найбільше відоме просте Софі Жермен: 18543637900515·2666667−1, 18543637900515·2666668−1 (2p+1)
  • 15.06.2012 — в PrimeGrid знайдено найбільше відоме узагальнене просте Ферма: 341112524288+1
  • 20.06.2012 — в PrimeGrid знайдено найбільше відоме узагальнене просте Ферма: 356926524288+1
  • 08.08.2012 — в PrimeGrid знайдено найбільше відоме узагальнене просте Ферма: 475856524288+1
  • 13.05.2013 — в PrimeGrid знайдено найбільший відомий дільник числа Ферма: 57·22747499+1 ділить F(2747497)
  • 29.12.2013 — в PrimeGrid знайдено найбільше відоме просте за основою 5: 37292·51487989+1
  • 14.01.2014 — в PrimeGrid знайдено найбільше відоме просте 321: 3·210829346+1
  • 17.01.2014 — в PrimeGrid знайдено найбільше відоме просте за основою 5: 59912·51500861+1
  • 31.01.2014 — в PrimeGrid знайдено найбільше відоме просте за основою 5: 178658·51525224−1
  • 06.02.2014 — в PrimeGrid знайдено найбільше відоме просте за основою 5: 22934·51536762−1
  • 21.03.2014 — в PrimeGrid знайдено найбільше відоме просте за основою 5: 330286·51584399−1
  • 09.04.2014 09:13:42 UTC — в PrimeGrid знайдено найбільше відоме просте за основою 5: 104944·51610735−1
  • 09.04.2014 18:33:30 UTC — в PrimeGrid знайдено найбільше відоме просте за основою 5: 207394·51612573−1
  • 25.04.2014 — в PrimeGrid знайдено найбільше відоме просте за основою 5: 326834·51634978−1
  • 19.06.2014 — в PrimeGrid знайдено найбільше відоме просте за основою 5: 22478·51675150−1
  • 27.06.2014 — в PrimeGrid знайдено найбільше відоме просте за основою 5: 138172·51714207−1
  • 23.07.2014 — в PrimeGrid знайдено найбільше відоме просте за основою 5: 24032·51768249+1
  • 25.07.2014 — в PrimeGrid знайдено найбільший відомий дільник числа Ферма: 193·23329782+1 ділить F(3329780)
  • 17.08.2014 — в PrimeGrid знайдено найбільше відоме просте за основою 5: 133778·51785689+1
  • 21.09.2014 — в PrimeGrid знайдено найбільше відоме просте за основою 5: 325918·51803339−1
  • 18.10.2014 — в PrimeGrid знайдено найбільше відоме просте за основою 5: 109208·51816285+1
  • 22.11.2014 — в PrimeGrid знайдено найбільше відоме просте 321: 3·211484018−1
  • 13.03.2015 — в PrimeGrid знайдено найбільше відоме просте 321: 3·211731850−1
  • 23.05.2015 — в PrimeGrid знайдено найбільше відоме просте за основою 5: 144052·52018290+1
  • 23.06.2015 — в PrimeGrid знайдено найбільше відоме просте 321: 3·211895718−1
  • 21.10.2015 — в PrimeGrid знайдено найбільше відоме просте за основою 5: 100186·52079747−1
  • 10.11.2015 — в PrimeGrid знайдено найбільше відоме просте за основою 5: 154222·52091432+1
  • 11.01.2016 — в PrimeGrid знайдено найбільше відоме просте за основою 5: 306398·52112410−1
  • 29.02.2016 — в PrimeGrid знайдено найбільше відоме просте Софі Жермен: 2618163402417·21290000−1, 2618163402417·21290001−1 (2p+1)
  • 06.03.2016 — в PrimeGrid знайдено найбільше відоме просте за основою 5: 77072·52139921+1
  • 15.03.2016 — в PrimeGrid знайдено найбільше відоме просте за основою 5: 92158·52145024+1
  • 25.03.2016 — в PrimeGrid знайдено найбільше відоме просте за основою 5: 296024·52185270−1
  • 30.05.2016 — в PrimeGrid знайдено найбільше відоме просте за основою 5: 53546·52216664−1
  • 20.08.2016 — в PrimeGrid знайдено найбільше відоме просте за основою 5: 180062·52249192−1
  • 14.09.2016 — в PrimeGrid знайдено найбільшу відому пару простих−близнюків: 2996863034895·21290000±1
  • 08.10.2016 — в PrimeGrid знайдено найбільше відоме узагальнене просте Каллена: 682156·79682156+1
  • 31.10.2016 — в PrimeGrid знайдено найбільше відоме просте Прота, а також найбільше відоме просте Кольбера: 10223·231172165+1
  • 21.08.2017 — в PrimeGrid знайдено найбільше відоме узагальнене просте Каллена: 1341174·531341174+1
  • 25.08.2017 — в PrimeGrid знайдено найбільше відоме просте за основою 5: 171362·52400996−1
  • 29.08.2017 — в PrimeGrid знайдено найбільше відоме узагальнене просте Ферма: 9194441048576+1
  • 17.09.2017 — в PrimeGrid знайдено найбільше відоме просте за основою 5: 301562·52408646−1
  • 18.01.2018 — в PrimeGrid знайдено найбільше відоме узагальнене просте Каллена: 1323365·1161323365+1
  • 11.03.2018 — в PrimeGrid знайдено найбільше відоме узагальнене просте Каллена: 1806676·411806676+1
  • 21.03.2018 — в PrimeGrid знайдено найбільше відоме просте Вудала: 17016602·217016602+1
  • 19.06.2018 — в PrimeGrid знайдено найбільше відоме просте за основою 5: 327926·52542838−1
  • 20.06.2018 — в PrimeGrid знайдено найбільше відоме просте за основою 5: 81556·52539960+1
  • 29.07.2018 — в PrimeGrid знайдено найбільше відоме просте за основою 5: 66916·52628609−1
  • 15.08.2018 — в PrimeGrid знайдено найбільше відоме просте за основою 5: 194368·52638045−1
  • 31.10.2018 — в PrimeGrid знайдено найбільше відоме узагальнене просте Ферма: 10590941048576+1
  • 26.04.2019 — в PrimeGrid знайдено найбільше відоме просте за основою 5: 138514·52771922+1
  • 21.06.2019 — в PrimeGrid знайдено найбільше відоме просте за основою 5: 88444·52799269−1
  • 23.06.2019 — в PrimeGrid знайдено найбільше відоме просте за основою 5: 322498·52800819−1
  • 02.09.2019 — в PrimeGrid знайдено найбільше відоме узагальнене просте Каллена: 2805222·252805222+1
  • 23.09.2019 — в PrimeGrid знайдено першу відому арифметичну прогресію з 27 простих чисел: 224584605939537911+81292139*23#*n для n=0..26
  • 05.03.2020 — в PrimeGrid знайдено найбільше відоме просте за основою 5: 35816·52945294−1
  • 09.03.2020 — в PrimeGrid знайдено найбільше відоме просте за основою 5: 146264·52953282−1
  • 12.03.2020 — в PrimeGrid знайдено найбільше відоме просте за основою 5: 238694·52979422−1
  • 16.03.2020 — в PrimeGrid знайдено найбільше відоме просте за основою 5: 207494·53017502−1
  • 01.05.2020 — в PrimeGrid знайдено найбільше відоме просте за основою 5: 118568·53112069+1
  • 13.08.2020 — в PrimeGrid знайдено найбільше відоме просте за основою 5: 109838·53168862−1

Підпроєкти (BOINC)

Завершені / призупинені підпроєкти

Застосунки

Застосунок app_name
CPU NVIDIA CPU NVIDIA CPU NVIDIA CPU NVIDIA CPU NVIDIA
CUDA CUDA CUDA CUDA CUDA
321 Prime Search LLR (321) llr321
AP27 Search (AP27) ap26
Cullen Prime Search LLR (CUL) llrCUL
Extended Sierpinski Problem LLR (ESP) llrESP
Generalized Cullen/Woodall Prime Search LLR (GCW) llrGCW
Prime Sierpinski Problem LLR (PSP) llrPSP
Proth Prime Search LLR (PPS) llrPPS
Proth Prime Search Extended LLR (PPSE) llrPPSE
Proth Mega Prime Search LLR (MEGA) llrMEGA
Seventeen or Bust LLR (SOB) llrSOB
Sierpinski / Riesel Base 5 LLR (SR5) llrSR5
Sophie Germain Prime Search LLR (SGS) llrTPS
The Riesel Problem LLR (TRP) llrTRP
Woodall Prime Search LLR (WOO) llrWOO
Proth Prime Search Sieve (PPS-Sieve) pps_sr2sieve
Generalized Fermat Prime Search n=15 (GFN-15) genefer15
Generalized Fermat Prime Search n=16 (GFN-16) genefer16
Generalized Fermat Prime Search n=17 Low (GFN-17-Low) genefer17low
Generalized Fermat Prime Search n=17 Mega (GFN-17-Mega) genefer17mega
Generalized Fermat Prime Search n=18 (GFN-18) genefer18
Generalized Fermat Prime Search n=19 (GFN-19) genefer19
Generalized Fermat Prime Search n=20 (GFN-20) genefer20
Generalized Fermat Prime Search n=21 (GFN-21) genefer
Generalized Fermat Prime Search n=22 (GFN-22) genefer_wr
Do You Feel Lucky? (GFN World Record) genefer_extreme
Wieferich and Wall-Sun-Sun ww

Переваги застосунків

  • виконання завдань Sieve на GPU дає перевагу над CPU у 10-100 разів (в залежності від моделі GPU і CPU)
  • виконання завдань Sieve на GPU з CUDA (NVIDIA) має перевагу над аналогічним за рівнем GPU з OpenCL (AMD)
  • виконання завдань Genefer / Genefer (World Record) на GPU (NVIDIA) з використанням CUDA має перевагу над OpenCL для відеокарт родини Fermi та старших
  • виконання завдань Genefer / Genefer (World Record) на GPU (NVIDIA) з використанням OpenCL має перевагу над CUDA для відеокарт родини Kepler та молодших
  • виконання завдань LLR та Genefer з оптимізацією під інструкції AVX сучасних Intel процесорів (Sandy/Ivy Bridge, Haswell) дає перевагу над SSE3 у декілька разів
  • виконання завдань Sieve на 64-бітному CPU дає перевагу над 32-бітних CPU клієнтом у ~1.7 раза
  • виконання завдань LLR на 64-бітному CPU має перевагу над 32-бітним CPU

Початкові підпроєкти

Message7

Першим проєктом Message@Home (тепер PrimeGrid) був Message7, в якому за допомогою прямого перебору намагалися відновити повідомлення, зашифроване за допомогою md5. У серпні 2005 року Message7 було припинено.

RSA 640

У серпні 2005 до проєкту було долучено застосунок RSA 640 Factoring Challenge. Подібно до Message7 у цьому проєкті відбувались намагання прямим перебором віднайти дільник для 640 цифрового RSA ключа.

У листопаді 2005 зусиллями іншого проєкту було факторизовано RSA 640, отже PrimeGrid рушив на штурм RSA 768 Factoring Challenge.

RSA 768

Оскільки шанси на факторизацію RSA 768 виявились нескінченно малими, подальший розвиток залишено для PerlBOINC. У березні 2006 проєкт RSA 768 було перервано для запуску нового, PrimeGen.

PrimeGen

У березні 2006 було запущено проєкт PrimeGen, метою якого було побудувати базу послідовних простих чисел. Однак, незабаром з'ясувалося, що ці зусилля мають нескінченно малі шанси на успіх, отже підпроєкт було зупинено.

Підпроєкти AP

AP26

Арифметична прогресія — послідовність чисел, різниця між послідовними членами якої є сталим числом. Наприклад послідовність 3, 5, 7, 9, 11, 13, 15, … є арифметичною прогресією з фіксованою різнецею, що дорівнює 2.

Таким чином, арифметична прогресія простих чисел — це послідовність простих чисел, різниця між послідовними членами якої є сталим числом. Наприклад, послідовність 3, 7, 11 є арифметичною прогресією 3 простих із фіксованою різницею 4.

Для арифметичної прогресії (AP) простих, AP-k означає k простих форми p+d*n для деяких p і d, а n приймає значення від 0 до k−1. Арифметичну прогресію, що наведено вище, можна записати як AP-3 виду 3+4·n для n=0,1,2.

n=0; 3+4·0 = 3+0 = 3

n=1; 3+4·1 = 3+4 = 7

n=2; 3+4·2 = 3+8 = 11

Іншим прикладом арифметичної прогресії простих є AP-10 виду 199+210·n для n=0..9. Вона продукує наступну послідовність простих: 199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089.

AP-k також інколи записують як PAP-k (Primes in Arithmetic Progression).

Підпроєкт AP26 займався пошуком найдовшої (але не найбільшої) арифметичної прогресії простих чисел. На той час найдовшою відомою AP була AP-25, що була віднайдена 17 травня 2008 року і має вигляд 6171054912832631+366384·23#·n (8132758706802551)

Результати підпроєкту

12 квітня 2010 року у підпроєкті AP26 було знайдено першу відому арифметичну прогресію 26 простих чисел:

APТипДатаАвтор
43142746595714191+23681770*23#*n для n=0..25AP2612.04.2010 Benoãt Perichon

, де 23#=2·3·5·7·11·13·17·19·23=223092870

У травні 2010 року підпроєкт AP26 було завершено.

20 вересня 2016 року підпроєкт пошуку арифметичної прогресії простих чисел було відновлено під назвою AP27 (арифметична прогресія 27 простих чисел)

Результати підпроєкту

23 вересня 2019 року у підпроєкті AP27 було знайдено першу відому арифметичну прогресію 27 простих чисел:

APТипДатаАвтор
224584605939537911+81292139*23#*n для n=0..26AP2723.09.2019 Rob Gahan

, де 23#=2·3·5·7·11·13·17·19·23=223092870

Підпроєкти LLR

Підпроєкт 321 Prime Search — це продовження проєкту 321 Search, що було розпочато Paul Underwood, який шукав прості виду 3·2n−1. PrimeGrid додав пошук за формою +1 і продовжує пошук аж до n=25M.

Експоненти n, для яких відповідні числа форми 3·2n+1 прості, утворюють послідовність A002253:

1, 2, 5, 6, 8, 12, 18, 30, 36, 41, 66, 189, 201, 209, 276, 353, 408, 438, 534, 2208, 2816, 3168, 3189, 3912, 20909, 34350, 42294, 42665, 44685, 48150, 54792, 55182, 59973, 80190, 157169, 213321, 303093, 362765, 382449, 709968, 801978, 916773, 1832496, 2145353, 2291610, 2478785, 5082306, 7033641, 10829346, 16408818.

Експоненти n, для яких відповідні числа форми 3·2n−1 прості, утворюють послідовність A002235:

0, 1, 2, 3, 4, 6, 7, 11, 18, 34, 38, 43, 55, 64, 76, 94, 103, 143, 206, 216, 306, 324, 391, 458, 470, 827, 1274, 3276, 4204, 5134, 7559, 12676, 14898, 18123, 18819, 25690, 26459, 41628, 51387, 71783, 80330, 85687, 88171, 97063, 123630, 155930, 164987, 234760, 414840, 584995, 702038, 727699, 992700, 1201046, 1232255, 2312734, 3136255, 4235414, 6090515, 11484018, 11731850, 11895718, 16819291.

Проєкт 321 Search було розпочато у лютому 2003 із листа від Paul Underwood, що шукав допомогу зацікавлених у пошуку простих виду 3·2n−1. Початкова мета була перевірити результати роботи вже проведені проєктом Proth Search і розширити перелік простих до експоненти в 1 мільйон (n=1M). Ця мета була швидко досягнута, тому вони розвинули мету з пошуку мега великих простих, для яких вони провели відсів аж до n=5M.

Результати підпроєкту

Прості числа виду 3·2n±1, що було знайдено у PrimeGrid (станом на 20 січня 2021 року):

Просте числоЦифрДатаАвтор
3·24235414−11 274 98823.03.2008 Dylan Bennett
3·22291610+1689 84411.08.2008 Thomas Wolfram
3·25082306+11 529 92803.04.2009 Andy Brady
3·26090515−11 833 42924.04.2010 David Mumper
3·27033641+12 117 33821.02.2011 Michael Herder
3·210829346+13 259 95914.01.2014 Sai Yik Tang
3·211484018−13 457 03522.11.2014 Serhiy Gushchak
3·211731850−13 531 64013.03.2015 Karsten Klopffleisch
3·211895718−13 580 96923.06.2015 Michael Schulz
3·216408818+14 939 54725.11.2020 Scott Brown
3·216819291−15 063 11220.01.2021 Rudi Tapper

Cullen Prime Search — це підпроєкт з пошуку простих чисел Каллена. В теорії чисел число Каллена — натуральне число виду Cn = n·2n+1

Експоненти n, для яких відповідні числа Каллена прості, утворюють послідовність A005849:

1, 141, 4713, 5795, 6611, 18496, 32292, 32469, 59656, 90825, 262419, 361275, 481899, 1354828, 6328548, 6679881.

В 1976 році Христофер Хулей (англ. Christopher Hooley) показав, що майже всі числа Каллена складені. Доведення Христофера Хулей було перероблено математиком Хірмі Суяма, щоб показати, що воно вірне для будь-якої послідовності n·2n+a+b, де a і b — цілі числа, а також частково для чисел Вудала.

Існує гіпотеза, що простих чисел Каллена нескінчено багато.

Результати підпроєкту

Прості числа Каллена, що було знайдено у PrimeGrid (станом на 25 липня 2009 року):

Просте числоЦифрДатаАвтор
6328548·26328548+11 905 09020.04.2009 Dennis R. Gesker
6679881·26679881+12 010 85225.07.2009 Anonymous

Extended Sierpinski Problem

В 1962 році Джон Селфридж висунув гіпотезу, що число Серпінського k = 78557 є найменшим з таких чисел. Проблема Серпінського намагається підтвердити цю гіпотезу. В 1976 році Натан Мендельсон (Nathan Mendelsohn) висунув гіпотезу, що другим числом Серпінського є просте число k = 271129. Prime Sierpinski Problem намагається підтвердити гіпотезу, що це число є найменшим простим числом Серпінського.

Якщо обидві ці проблеми будуть розв'язані і буде встановлено, що k = 78557 є найменшим числом Серпінського, і k = 271129 — найменшим простим числом Серпінського, однак це не доводить, що k = 271129 є другим числом Серпінського. Оскільки Prime Sierpinski Problem перевіряє всі прості k у проміжку 78557 < k < 271129, все що достатньо зробити, це перевірити всі складені з проміжку 78557 < k < 271129. Таким чином було розпочато проєкт Extended Sierpinski Problem.

Станом на грудень 2019 року пошук залишається для 9-ти k, до яких досі не знайдено простих:

91549, 131179, 163187, 200749, 202705, 209611, 227723, 229673, 238411

Результати підпроєкту

Прості, що було знайдено у PrimeGrid (станом на 24 грудня 2019 року):

Підпроєкт з пошуку простих чисел Прота k·2n+1 — дільників чисел Ферма.

Роботу було розпочато з пошуку простих для k=19683 аж до n=4M.

У другій стадії відбувався пошук для 5<=k<=49 аж до n=9M.

Підпроєкт вважається частиною проєкту Proth Prime Search, отож всі результати і досягнення зараховуються до PPS-LLR.

У березні 2021 року підпроєкт Fermat Divisor Search було завершено.

Результати підпроєкту

Просте числоЦифрДілитьДатаАвтор
13·25523860+11 662 849 F(5523858) 22.01.2020 Scott Brown
39·26648997+12 001 550 20.10.2020 Tom Greer
39·26684941+12 012 370 20.10.2020 Mike Thümmler
19·26833086+12 056 966 24.10.2020 Jiri Jaros
15·27300254+12 197 597 25.10.2020 Robert Gelhar
29·27374577+12 219 971 27.10.2020 Pavel Atnashev
45·27513661+12 261 839 12.11.2020 Hiroyuki Okazaki
15·27619838+12 293 801 06.12.2020 anonymous user of China
45·27661004+12 306 194 13.12.2020 Tim Terry
29·27899985+12 378 134 14.01.2021 Tom Greer
39·27946769+12 392 218 14.01.2021 Scott Brown
27·27963247+12 397 178 F(7963245) 14.01.2021 Tom Greer
31·28348000+12 513 000 19.01.2021 Igor Karpenko
39·28413422+12 532 694 23.01.2021 Philipp Bliedung
25·28456828+12 545 761 27.01.2021 Wolfgang Schwieger
17·28636199+12 599 757 17.02.2021 Tom Greer
25·28788628+12 645 643 01.03.2021 Tom Greer

Узагальнене число Каллена визначається як число виду n·bn+1, де n+2>b. Якщо просте число можна записати таким чином, його називають узагальненим простим числом Каллена.

Узагальнене число Вудала визначається як число виду n·bn−1, де n+2>b. Якщо просте число можна записати таким чином, його називають узагальненим простим числом Вудала.

Метою GCW Prime Search є пошук узагальнених простих Каллена і Вудала за основами, для яких досі не віднайшли жодного простого. З самого початку GCW13 Search пощастило знайти найбільше відоме узагальнене просте Вудала: 563528·13563528−1.

Наступні бази було обрано для подальшого пошуку узагальнених простих:

  • Вудал: b = 43, 104 і 121
  • Каллен: b = 13, 25, 29, 41, 47, 49, 53, 55, 68, 69, 73, 79, 101, 109, 113, 116 і 121

Основа 149 — наступна основа без відомих простих для обох і GC, і GW.

Початкова глибина відсіву для цих основ становила 1.5T. Lennart Vogel перевірив на простоту всі основи аж до n=100K (лише GW121 до 50K). Як побачимо нижче, це все була подвійна перевірка попередніх зусиль.

Результати проєкту

b УзагальненеПросте числоЦифрДатаАвтор
13 Woodall 563528·13563528−1627 74507.12.2009 Lennart Vogel
43 Woodall 404882·43404882−1661 36824.02.2011 Ricky L. Hubbard
104 Woodall 129840·104129840−1261 89726.05.2010 Sideshow_Larry
121 Woodall 94112·12194112−1196 02119.05.2010 unconnected
13 Cullen
25 Cullen 2805222·252805222+13 921 53902.09.2019 Tom Greer
29 Cullen
41 Cullen 1806676·411806676+12 913 78511.03.2018 Hiroyuki Okazaki
47 Cullen
49 Cullen
53 Cullen 1341174·531341174+12 312 56121.08.2017 Hiroyuki Okazaki
55 Cullen
68 Cullen 129897·68129897+1238 04325.05.2010 [SG-SPEG]Puzzle-Peter
69 Cullen
73 Cullen
79 Cullen 682156·79682156+11 294 48408.10.2016 Franz-Xaver Harvanek
101 Cullen
109 Cullen
113 Cullen 427194·113427194+1877 06929.01.2012 Ricky L. Hubbard
116 Cullen 1323365·1161323365+12 732 03818.01.2018 Scott Brown
121 Cullen

Prime Sierpinski Problem

Числом Серпінського називається таке непарне натуральне число k, що для довільного натурального n число k·2n+1 не є простим.

Послідовність A076336 відомих чисел Серпінського починається так:

78557, 271129, 271577, 322523, 327739, 482719, 575041, 603713, 903983, 934909, 965431, …

Проблему Серпінського можна сформулювати так: «Яким є найменше число Серпінського?», а проблему простого Серпінського: «Яким є найменше просте число Серпінського?»

Найменше доведене просте число Серпінського — 271129. Щоб довести, що 271129 є найменшим простим числом Серпінського, необхідно показати, що кожне просте k, таке, що 0 < k < 271129, не є числом Серпінського.

Seventeen or Bust працює над проблемою Серпінського, а Prime Sierpinski Project — над проблемою простого Серпінського.

Для наступних k до цього часу залишаються невідомі прості для кожного з проєктів:

Seventeen or BustPrime Sierpinski Project
21181
2269922699[1]
24737
55459
6760767607[1]
79309
79817
152267
156511
222113
225931
237019

Результати підпроєкту

Прості, що було знайдено у PrimeGrid (станом на 17 вересня 2017 року):

Просте числоЦифрДатаАвтор
168451·219375200+15 832 52217.09.2017 Ben Maloney

У підпроєкті Proth Prime Search відшукуються прості числа виду k·2n+1, за умови 2n > k, що часто називають простими числами Прота. Цей проєкт також дає можливість віднайти дільники для «класичних» чисел Ферма, узагальнених чисел Ферма чи розширених узагальнених чисел Ферма. Як тільки у PrimeGrid знаходиться просте Прота, воно одразу проходить додаткову перевірку на сервері PrimeGrid, чи є воно дільником однієї з форм чисел Ферма.

Proth Prime Search проводиться у співпраці з проєктом Proth Search. Початковою метою проєкту PrimeGrid було перевірити всю попередню роботу проєкту Proth Search аж до n=500K для непарних k<1200 і заповнити будь-які можливі прогалини. PrimeGrid перевірив все аж до n=200000 і знайшов деякі прості, що було випущено минулим пошуком. Незважаючи на те, що прості вже надто малі, щоб потрапити до бази Top 5000, цей пошук був важливим, адже він міг призвести до відшукання нових дільників для «класичних» чисел Ферма, узагальнених чисел Ферма або розширених узагальнених чисел Ферма.

Проєкт Proth Search було започатковано 1998 року за участю Ray Ballinger та Wilfrid Keller, які організували розподілені обчислення для знаходження простих Прота (прості виду k·2n+1) для k < 300. Ray був зацікавлений у пошуку простих, а Wilfrid — у пошуку дільників для чисел Ферма. Пізніше проєкт розширив межі свого пошуку до k < 1200. Mark Rodenkirch (aka rogue) допомагав Ray в утримані вебсайту останні декілька літ.

На початку 2008 року PrimeGrid та Proth Search розпочали співпрацю з надання програмного забезпечення для об'єднання зусиль розподілених обчислень.

Від того часу PrimeGrid веде пошук простих Прота у декількох різних підпроєктах, як у вигляді підпроєктів BOINC, так і в PRPNet.

Станом на 6 вересня 2019 року в PrimeGrid існує 4 діапазони пошуку простих Прота, які оформлені як 4 різних підпроєкти BOINC:

  • PPS: k·2n+1 для k<1200
  • PPSE: k·2n+1 для 1200<k<10000
  • MEGA: k·2n+1 для 100<k<300 і 3.322M<=n<3.6M
  • DIV: k·2n+1 для 5<=k<=49 і n<=9M

Мега Просте визначається як просте з щонайменше одним мільйоном десяткових знаків (титанічні прості містять щонайменше 1000 знаків, гігантське просте — 10000 знаків). Станом на 3 березня 2015 року відомо про 125 Мега Простих[2].

Підпроєкт MEGA фокусується на пошуку Мега Простих. Час перевірки на одному ядрі швидкого комп'ютера займає близько 1 години (Intel Haswell CPU). Пошук простих форми k·2n+1 було розпочато з n=3322000 для k<100, виключаючи k=3, 5, 7, 27. 18 липня 2014 року підпроєкт було перенесено з PRPNet в BOINC із зміною діапазонів пошуку з k<100 на 100<k<300.

PrimeGrid має намір продовжити пошук простих чисел Прота невизначено довго.

Результати підпроєкту

Фактично не минає дня, щоб у підпроєкті не було відшукано нових простих Прота. Серед усіх цих простих особливій інтерес викликають прості, що є дільниками чисел Ферма.

У табличці, що наведена нижче, представлені прості Прота, що було знайдено у PrimeGrid, що є дільниками чисел Ферма (станом на 14 лютого 2015 року):

Просте числоЦифрДілитьДатаАвтор
651·2476632+1143 484 F(476624) 27.12.2008 Eric Ueda
519·2567235+1170 758 F(567233) 06.03.2009 Senji Yamashita
659·2617815+1185 984 F(617813) 31.03.2009 Eric Embling
7333·2138560+141 715 F(138557) 12.03.2011 Dirk D'huyvetters
9·22543551+1765 687 F(2543548) 22.06.2011 Scott Brown
3771·2221676+166 736 F(221670) 01.07.2011 Mark Doom
4479·2226618+168 223 F(226614) 08.07.2011 Peter Doggart
25·22141884+1644 773 F(2141872) 09.09.2011 Grzegorz Granowski
329·21246017+1375 092 F(1246013) 04.01.2012 Bruce Dodson
131·21494099+1449 771 F(1494096) 07.02.2012 Rob Derrera
7905·2352281+1106 052 F(352279) 02.05.2012 James Boerner
1705·2906110+1272 770 F(906108) 13.06.2012 Robert Boniecki
183·21747660+1526 101 F(1747656) 10.03.2013 Bart van Rooijen
57·22747499+1827 082 F(2747497) 13.05.2013 Marshall Bishop
2145·21099064+1330 855 F(1099061) 18.06.2013 Sai Yik Tang
193·23329782+11 002 367 F(3329780) 25.07.2014 Raymond Ottusch
267·22662090+1801 372 F(2662088) 13.02.2015 Jay Parangalan

Станом на 18 липня 2014 року підпроєктом MEGA у PRPNet було знайдено 7 Мега Простих:

Просте числоЦифрДатаАвтор
81·23352924+11 009 33317.01.2012 Michał Gasewicz
87·23496188+11 052 46028.03.2014 Stefan Larsson
51·23490971+11 050 88928.03.2014 Gary Craig
93·23544744+11 067 07706.05.2014 Michał Gasewicz
33·23570132+11 074 71910.06.2014 Fabrice Le Foulher
35·23570777+11 074 91310.06.2014 Robert Lacroix
35·23587843+11 080 05004.07.2014 Peter Tibbott

Станом на 28 грудня 2017 року підпроєктом Proth Mega Prime Search були знайдені наступні Мега Прості:

З 2018 року у проєкті відбулась зміна політики анонсування відкриттів визначних простих чисел. Лише числа, що потрапляють у топ 100 простих, анонсуються.

Seventeen or Bust

Числом Серпінського називається таке непарне натуральне число k, що для довільного натурального n число k·2n+1 не є простим.

Послідовність відомих чисел Серпінського починається:

78557, 271129, 271577, 322523, 327739, 482719, 575041, 603713, 903983, 934909, 965431, …

Те, що число 78557 є числом Серпінського, було доведено в 1962 році Джоном Селфриджем (англ. John Selfridge), який виявив, що кожне число виду 78557·2n+1 ділиться принаймні на одне число із множини {3, 5, 7, 13, 19, 37, 73}.

Проблему Серпінського можна сформулювати так: «Яким є найменше число Серпінського?»

Більшість знавців теорії чисел вірять, що 78557 є найменшим числом Серпінського. Щоб це довести, достатньо показати, що для кожного непарного k, такого, що 0<k<78557, існує таке n, що число k·2n+1 є простим.

Підпроєкт Seventeen or Bust працює над проблемою Серпінського. Проєкт так називається, бо до його початку не біло відомо, чи існують прості для 17-ти чисел k. Наразі залишається знайти прості числа для 5-ти k, інші k, для яких відомі прості k·2n+1, наведено в таблиці:

kПросте числоЦифрДатаАвтор
1 48474847·23321063+1999 74415.10.2005 Richard Hassler
2 53595359·25054502+11 521 56106.12.2003 Randy Sundquist
3 1022310223·231172165+19 383 76131.10.2016 Szabolcs Peter
4 1924919249·213018586+13 918 99026.03.2007 Константин Агафонов
5 21181
6 22699
7 24737
8 2765327653·29167433+12 759 67708.06.2005 Derek Gordon
9 2843328433·27830457+12 357 20730.12.2004 анонімний учасник
10 3366133661·27031232+12 116 61713.10.2007 Sturle Sunde
11 4413144131·2995972+1299 82305.12.2002 deviced (нік)
12 4615746157·2698207+1210 18627.11.2002 Stephen Gibson
13 5476754767·21337287+1402 56922.12.2002 Peter Coels
14 55459
15 6556765567·21013803+1305 19003.12.2002 James Burt
16 67607
17 6910969109·21157446+1348 43107.12.2002 Sean DiMichele

Результати підпроєкту

Прості підпроєкту SoB, що було знайдено у PrimeGrid (станом на 31 жовтня 2016 року):

Просте числоЦифрДатаАвтор
10223·231172165+19 383 76131.10.2016 Szabolcs Peter

Проблема Серпінського/Різеля за основою 5

Цей підпроєкт є поширенням проблеми Серпінського/Різеля (SoB/TRP). Він намагається розв'язати проблему Серпінського/Різеля за основою 5, віднайти найменше число Серпінського/Різеля. Таким чином відшукуються прості виду k·5n±1 з парними значеннями k.

Числа Серпінського за основою 5

Гіпотеза полягає у тому, що найменшим парним числом Серпінського за основою 5 є k = 159986. Щоб довести це, достатньо показати, що існує просте число виду k·5n+1 для кожного парного k < 159986. Наразі це доведено для всіх парних k, окрім наступних 30 значень (станом на 1 травня 2020 року): k = 6436, 7528, 10918, 26798, 29914, 31712, 36412, 41738, 44348, 44738, 45748, 51208, 58642, 60394, 62698, 64258, 67612, 67748, 71492, 74632, 76724, 83936, 84284, 90056, 92906, 93484, 105464, 126134, 139196, 152588.

Числа Різеля за основою 5

Гіпотеза полягає у тому, що найменшим парним числом Різеля за основою 5 є k=346802. Щоб довести це, достатньо показати, що існує просте число виду k·5n−1 для кожного парного k < 346802. Наразі це доведено для всіх парних k, окрім наступних 62 значень (станом на 13 серпня 2020 року): k = 3622, 4906, 23906, 26222, 35248, 52922, 63838, 64598, 68132, 71146, 76354, 81134, 92936, 102818, 102952, 109238, 109862, 127174, 131848, 134266, 136804, 143632, 145462, 145484, 146756, 147844, 151042, 152428, 154844, 159388, 164852, 170386, 170908, 177742, 182398, 187916, 189766, 190334, 195872, 201778, 204394, 206894, 213988, 231674, 239062, 239342, 246238, 248546, 259072, 265702, 267298, 271162, 273662, 285598, 285728, 298442, 304004, 313126, 318278, 325922, 335414, 338866.

Історія

17 вересня 2004 року на сторінках yahoo групи primeform Роберт Сміт (Robert Smith) вперше презентував ідею пошуку найменших чисел Серпінського/Різеля за основою 5. Використовуючи покриваючу множину {3, 7, 13, 31, 601}, він висунув гіпотезу, що k=346802 є найменшим числом Різеля за основою 5. Невдовзі Гвідо Сметрійнз (Guido Smetrijns) запропонував k=159986 як найменше число Серпінського за основою 5.

Після виконання великої частини самостійних обрахунків, Роберт оголосив про це на форумі mersenneforum.org 28 вересня 2004 року, і таким чином, зусилля з розподіленого обчислення було розпочато. Іншими важливими гравцями у справі розробки, управління і розвитку проєкту є Lars Dausch, Geoff Reynolds, Anand S Nair, і Thomas Masser.

Результати підпроєкту

Прості, що було знайдено у PrimeGrid (станом на 23 червня 2019 року):

Просте число p називається простим Софі Жермен, якщо число 2·p+1 також є простим. Наприклад просте число 5 є простим Софі Жермен, адже число 2·5+1 = 11 також є простим. Ці числа названі числами Софі Жермен на честь екстраординарної французької математички, що зробила важливий внесок в галузі диференційної геометрії і теорії чисел та у вивчені Останньої Теореми Ферма.

В підпроєкті Sophie Germain Prime Search спочатку перевіряється на простоту число виду k·2n−1. Якщо воно є простим, тоді перевіряються числа k·2n+1, k·2n-1−1 та k·2n+1−1. Якщо виявиться, що простим є також k·2n-1−1 або k·2n+1−1 — це означає, що знайдено просте Софі Жермен. Якщо простим виявиться k·2n+1, тоді можна сказати, що знайдено прості числа-близнюки. Можливість знайти просте Софі Жермен або прості-близнюки робить пошук саме у цьому підпроєкті привабливішим.

Результати підпроєкту

Прості Софі Жермен, що було знайдено у PrimeGrid (станом на 29 лютого 2016 року):

Просте число SGS2p+1ЦифрДатаАвтор
18543637900515·2666667−118543637900515·2666668−1200 70109.04.2012 Philipp Bliedung
2618163402417·21290000−12618163402417·21290001−1388 34229.02.2016 Scott Brown

Прості-близнюки, що було знайдено у PrimeGrid (станом на 14 вересня 2016 року):

Просте числоЦифрДатаАвтор
3756801695685·2666669±1200 70025.12.2011 Timothy D. Winslow
2996863034895·21290000±1388 34214.09.2016 Tom Greer

The Riesel Problem

Ганс Івар Різель (англ. Hans Ivar Riesel, нар. 1929 у Стокгольмі) — шведський математик, у 1956 показав, що існує нескінчено велика кількість додатних непарних чисел k таких, що k·2n−1 є числом складеним для будь-якого цілого n ≥ 1. Такі числа тепер отримали назву чисел Різеля. Він також показав, що число k = 509203 є одним з таких. А також 509203 плюс будь-яке натуральне число, помножене на 11184810. Кожне число виду 509203·2n−1 ділиться принаймні на одне число із множини {3, 5, 7, 13, 17, 241}.

Існує гіпотеза, що 509203 є найменшим числом Різеля. Проблема Різеля полягає у тому, щоб довести, що 509203 є найменшим числом Різеля. Щоб показати, що це число є найменшим, достатньо віднайти просте число для кожного додатного непарного k, меншого за 509203. Станом на 7 лютого 2021 року залишається віднайти прості для 47 чисел k:

2293, 23669, 31859, 38473, 46663, 67117, 74699, 81041, 93839, 97139, 107347, 121889, 129007, 143047, 161669, 192971, 206039, 206231, 215443, 226153, 234343, 245561, 250027, 315929, 319511, 324011, 325123, 327671, 336839, 342847, 344759, 362609, 363343, 364903, 365159, 368411, 371893, 384539, 386801, 397027, 409753, 444637, 470173, 474491, 477583, 485557, 494743

Результати підпроєкту

Прості, що було знайдено у PrimeGrid (станом на 5 жовтня 2014 року):

Просте числоЦифрДатаАвтор
191249·23417696−11 028 83521.11.2010 Jonathan Pritchard
428639·23506452−11 055 55314.01.2011 Brett Melvold
65531·23629342−11 092 54605.04.2011 Adrian Schori
123547·23804809−11 145 36708.05.2011 Jakub Łuszczek
415267·23771929−11 135 47008.05.2011 Alexey Tarasov
141941·24299438−11 294 26526.05.2011 Scott Brown
353159·24331116−11 303 80231.05.2011 Jaakko Reinman
162941·2993718−1299 14502.02.2012 Dmitry Domanov
252191·25497878−11 655 03223.06.2012 Jan Haller
398023·26418059−11 932 03405.11.2013 Vladimir Volynsky
304207·26643565−11 999 91810.11.2013 Randy Ready
40597·26808509−12 049 57125.12.2013 Frank Meador
402539·27173024−12 159 30102.10.2014 Walter Darimont
502573·27181987−12 162 00004.10.2014 Denis Iakovlev
273809·28932416−12 688 93113.12.2017 Wolfgang Schwieger
146561·211280802−13 395 86516.11.2020 Pavel Atnashev
9221·211392194−13 429 39707.02.2021 Barry Schnur

Twin Prime Search (TPS) — підпроєкт, що займався пошуком великих простих-близнюків (twin primes). Підпроєкт використовує програму LLR (для тестування на простоту) та NewPGen (для відсіву), був розпочатий 13 квітня 2006 Майклом Квоком (Michael Kwok).

До цього часу не відомо, чи існує нескінченно багато простих-близнюків.

Проєктом TPS було знайдено рекордні прості-близнюки 2003663613·2195000±1 15 січня 2007 році на комп'ютері користувача Eric Vautier. Ці числа складаються з 58711 цифри, що зробило їх найбільшими відомими на той час простими-близнюками. Проєкт працював у співпраці з PrimeGrid, що зробив більшість LLR тестів.

6 серпня 2009 року 2 проєкти (PrimeGrid та Twin Prime Search) оголосили, що рекорд простих-близнюків поновлено. Це прості 65516468355·2333333±1 і складаються з 100355 цифр. Найменше з цих двох простих станом на серпень 2009 також є найбільшим з відомих простих Чена.

Woodall Prime Search — це підпроєкт з пошуку простих чисел Вудала. В теорії чисел число Вудала (що інколи називають числами Каллена другого порядку) — натуральне число виду Wn = n·2n−1

Експоненти n, для яких відповідні числа Вудала прості, утворюють послідовність A002234:

2, 3, 6, 30, 75, 81, 115, 123, 249, 362, 384, 462, 512, 751, 822, 5312, 7755, 9531, 12379, 15822, 18885, 22971, 23005, 98726, 143018, 151023, 667071, 1195203, 1268979, 1467763, 2013992, 2367906, 3752948, 17016602.

В 1976 році Христофер Хулей (англ. Christopher Hooley) показав, що майже всі числа Каллена складені. Доведення Христофера Хулей було перероблено математиком Хірмі Суяма, щоб показати, що воно вірне для будь-якої послідовності n·2n+a+b, де a і b — цілі числа, а також частково для чисел Вудала.

Є гіпотеза, що простих чисел Вудала є нескінчено багато.

Результати підпроєкту

Прості числа Вудала, що було знайдено у PrimeGrid (станом на 21 березня 2018 року):

Просте числоЦифрДатаАвтор
2013992·22013992−1606 27904.08.2007 Lasse Mejling Andersen
2367906·22367906−1712 81813.08.2007 Stephen Kohlman
3752948·23752948−11 129 75721.12.2007 Matthew J. Thompson
17016602·217016602−15 122 51521.03.2018 Diego Bertolotti

Підпроєкти WW

Просте p називається простим Віферіха, якщо p2 ділить 2p-1−1. Ці прості названі за ім'ям Артура Віферіха, німецького математика, який у 1909 році довів, що якщо перша частина останньої теореми Ферма не виконується для деякої експоненти p, тоді p задовільняє умові ap-1 = 1 (mod p2) для a=2.

Незважаючи на численні пошуки, донині відомо лише 2 простих числа Віферіха — це 1093 та 3511. Рідкісність таких простих веде до зацікавлення у пошуку «майже» простих Віферіха. Вони визначаються як спеціальні випадки для малих значень |A|.

Класичне означення близькості

Просте число p, що задовільняє рівнянню для малих значень |A|, назагал називається майже простим Віферіха.

Історія пошуку

Пошук простих і майже простих Віферіха триває вже більше 70 років. Ось історія прогресу:

Верхня межа Автор Дата
16000 Beeger 1940
50000 Froberg unknown
100000 Kravitz 1960
200183 Pearson 1964
500000 Riesel 1964
30·106 Froberg 1968
3·109 Brillhart, Tonascia, and Weinberger 1971
6·109 Lehmer 1981
61·109 Clark 1996
4·1012 Crandall, Dilcher, and Pomerance 1997
46·1012 Brown and McIntosh 2001
200·1012 Crump 2002
1.25·1015 Knauer and Richstein 2005
3·1015 Carlisle, Crandall, and Rodenkirch 2006
6.7·1015 Dorais and Klyve 2011
10·1015 PrimeGrid 13.01.2012
14·1015 PrimeGrid 14.04.2012
14·1016 PrimeGrid 11.08.2014

За цей час верхня межа пошуку досягла вже 136·1015. PrimeGrid почав пошук з 3·1015. Причина цього полягає в тому, що Dorais і Klyve дали інше означення майже простого Віферіха. Таким чином вони не шукали майже простих Віферіха за класичним означенням. PrimeGrid не сподівався знайти простих Віферіха у проміжку між 3·1015 та 6.7·1015, але сподівався знайти декілька майже простих. Так сталося, що визначення майже простого Віферіха, що дали Dorais та Klyve зловило декілька «класичних» майже простих Віферіха, але не всі. PrimeGrid шукає майже прості за умовою |A| < = 1000.

Просте Вола-Суня-Суня (або Фібоначчі-Віферіха) — це таке просте p > 5, для якого p2 ділить число Фібоначчі , де символ Лежандра визначається як

Хоча існує гіпотеза, що таких простих існує нескінчено багато, досі не відомо жодного Вола-Суня-Суня простого. Станом на листопад 2013, якщо вони і існують, вони мають бути більші за 26·1015.

Брак удачі в пошуку простих веде до зацікавленості в пошуку «майже» простих Вола-Суня-Суня. Вони визначаються як спеціальні випадки для малих значень |A|.

Класичне означення близькості

Просте число p, що задовільняє рівнянню для малих значень |A|, назагал називається майже простим Вола-Суня-Суня.

Історія пошуку

Вехня межа Автор Дата
109 Williams 1982
232 Montgomery 1991
100·1012 Knauer and McIntosh 2003
200·1012 McIntosh and Roettger 2005
970·1012 Dorais and Klyve 2011
1015 PrimeGrid 28.12.2011
1.5·1015 PrimeGrid 10.01.2012
2·1015 PrimeGrid 22.01.2012
2.5·1015 PrimeGrid 02.03.2012
6·1015 PrimeGrid 29.07.2012
28·1015 PrimeGrid 31.03.2014

Числа названі на честь Доналда Дайнса Вола (Donald Dines Wall) і братів близнюків Чжи Хон Суня (Zhi Hong Sun) та Чжи Вей Суня (Zhi Wei Sun), які в 1992 році показали, що якщо перша умова великої теореми Ферма не виконується для певного простого p, то p має бути простим числом Фібоначчі — Віферіха. Таким чином, до того, як велика теорема Ферма була доведена Ендрю Вайлсом, пошук простих Фібоначчі — Віферіха переслідував мету знайти потенційний контрприклад.

PrimeGrid шукає майже прості за умовою |A| < = 1000.

Підпроєкти PRP

Метою проєктів PRP (англ. PRobably Prime) є пошук ймовірно простих чисел, що вимагають додаткової перевірки на простоту методом LLR.

Це підпроєкт з пошуку узагальнених простих чисел Ферма виду bn+1, де n є ступенем 2.

Про узагальнені прості Ферма

Протягом XVII сторіччя П'єр Ферма (Pierre de Fermat) та Марен Мерсенн (Marin Mersenne) вивчали дві певні форми чисел, з надією, що вони можуть продукувати велику кількість простих чисел, чи навіть нескінчену кількість простих. Мерсенн працював над переліком простих виду 2n−1, таких, що n < 257. Знадобилось багато років праці, щоб створити коректний перелік таких чисел. У листуванні з Френікл (Frénicle) Ферма висловив переконання, якщо n є ступенем 2, тоді 2n+1 є простим числом. Ферма знав, що 3, 5, 17, 257 і 65537 є простими, але пізніше Леонард Ейлер (Leonhard Euler) показав, що Ферма помилявся, віднайшовши дільник для наступного числа.

На честь натхнених піонерів теорії чисел, числа виду 2n−1 тепер називаються числами Мерсенна, а числа виду 2n+1 числами Ферма. Пошук простих Мерсенна та Ферма значно просунувся від часів XVII сторіччя. Тепер відомі всі прості Мерсенна з кількістю цифр менше за 2'000'000 і досліджено всі числа Ферма аж до 2'000'000'000 цифр! Це стало можливим, тому що протягом XIX ст. було винайдено декілька ефектнивних методів перевірки цих чисел на простоту. Одночасно з цим, деякі тести не менш швидкі були знайдені для перевірки всіх чисел N, якщо відома факторизація чисел N−1 або N+1. Таким чином багато форм чисел можуть бути використані для пошуку найбільших відомих простих, але на диво пошук найбільших простих обмежується числами Мерсенна. Відомими виключенями стали (2148+1)/17 (винайдено у 1951 році з використанням ручного обчислювального методу), 180·(2127−1)2+1 (винайдено у 1951 році) і 391581·2216193−1 (знайдено за допомогою «Amdahl 6» в 1989).

З 50-х по 70-ті розмір найбільших відомих простих постійно ріс разом із швидкостями комп'ютерів, але використовувані алгоритми залишались тими самими, що і наприкінці XIX ст. Але в 80-х роках XX ст., методи, що використовуються для обчислення базової операції алгоритму, добутку, змінилась. Помітивши, що добуток може бути представлений у вигляді суми скінченої послідовності, теорія дискретних транформація показала, як швидко обчислити цю операцію за допомогою швидких перетворень Фур'є (Fast Fourier Transform, FFT). За допомогою цього методу було знайдено деякі прості з більш ніж 10'000 та 100'000 цифр.

В 1994 R. Crandall та B. Fagin винайшли, що за допомогою дискретних зважених трансформацій (Discrete Weighted Transform, DWT) швидкість пошуку простих Мерсенна та Ферма може бути подвоєна. Цей метод було використано у пошуку шости нових простих Мерсена (найбільше з них містило понад 6'000'000 цифр) і довести складеність деяких чисел Ферма. Але прості серед чисел Мерсена та Ферма є рідкістю і шанс знайти нове просте малий.

В 1998 році Y. Gallot помітив, що дискретна зважена трансформація є поліноміальною операцією і якщо представлення чисел не обмежується базою 2, тоді багато чисел можуть бути перевірені на тому ж рівні швидкості, як і числа Мерсенна: узагальнені числа Ферма (Generalized Fermat Numbers, GFN), які є числами виду bn+1, де n є ступенем 2. Він реалізував алгоритм в 1999 у програмі Proth.exe, яка з того часу була ще оптимізована. Теоретичні гіпотези стали дійсністю: пошук узагальнених простих Ферма так само швидкий, як і пошук простих Мерсенна такого ж розміру. За допомогою десятків комп'ютерів було знайдено багато простих, що містять більше ніж 100'000 цифр. У 2002 P. Carmody разом з B. Frey досягли великих успіхів в алгоритмі відсіву узагальнених чисел Ферма. P. Carmody організував прикладання великих зусиль до відсіву за допомогою програми, що була написана D. Underbakke, що таким чином прискорило пошук узагальнених простих чисел Ферма.

Узагальнених чисел Ферма існує набагато більше, ніж чисел Мерсенна того ж розміру і багато з них чекають на те, щоб заповнити прогалини між простими Мерсена, що вже знайдено і тими, що ще ні. Якщо ви зацікавлені у пошуку простих XXI сторіччя, вас запрошують долучитися до Generalized Fermat Prime Search!

Результати підпроєкту

Мега прості GFN (b2n+1, де n≥18), що було знайдено у PrimeGrid (станом на 21 січня 2020 року):

Просте числоЦифрДатаАвтор
10590941048576+16 317 60231.10.2018 Rob Gahan
9194441048576+16 253 21029.08.2017 Sylvanus A. Zimmerman
3638450524288+13 439 81029.05.2020 Wolfgang Schwieger
3214654524288+13 411 61324.12.2019 Alen Kecic
2985036524288+13 394 73918.09.2019 Peter Harvey
2877652524288+13 386 39729.06.2019 Roman Vogt
2788032524288+13 379 19317.04.2019 Ed Goforth
2733014524288+13 374 65518.03.2019 Yair Givoni
2312092524288+13 336 57204.08.2018 Rob Gahan
2061748524288+13 310 47820.03.2018 Cesare Marini
1880370524288+13 289 51115.01.2018 Scott Brown
475856524288+12 976 63308.08.2012 Masashi Kumagai
356926524288+12 911 15120.06.2012 (bherbihyewrbg)
341112524288+12 900 83215.06.2012 Peyton Hayslette
75898524288+12 558 64719.11.2011 Michael Goetz
9812766262144+11 832 85716.02.2020 Tom Greer
9750938262144+11 832 13712.02.2020 Alen Kecic
9450844262144+11 828 57821.01.2020 Jacob Eikelenboom
9125820262144+11 824 59405.12.2019 Yoshimitsu Kato
8883864262144+11 821 53509.09.2019 Rod Skinner
8521794262144+11 816 79809.09.2019 Ken Ito
6291332262144+11 782 25014.12.2018 Karsten Freihube
6287774262144+11 782 18612.12.2018 Greg Miller
5828034262144+11 773 54226.09.2018 Rob Gahan
5205422262144+11 760 67917.06.2018 Scott Brown
5152128262144+11 759 50805.06.2018 Rob Gahan
4489246262144+11 743 82801.03.2018 Wolfgang Schwieger
4246258262144+11 737 49315.02.2018 Rob Gahan
3933508262144+11 728 78327.01.2018 Alen Kecic
3853792262144+11 726 45210.01.2018 Rod Skinner
3673932262144+11 721 01003.12.2017 Sean Humphries
3596074262144+11 718 57216.11.2017 Howard Gordon
3547726262144+11 717 03130.10.2017 Scott Brown
3060772262144+11 700 22230.06.2017 Sean Humphries
2676404262144+11 684 94522.03.2017 Wolfgang Schwieger
2611204262144+11 682 14111.03.2017 Roman Vogt
2514168262144+11 677 82524.02.2017 William de Thomas
2042774262144+11 654 18724.11.2016 Tsuyoshi Ohsugi
1828858262144+11 641 59310.08.2016 Brook Harste
1615588262144+11 627 47704.05.2016 Brook Harste
1488256262144+11 618 13105.03.2016 Stefan Larsson
1415198262144+11 612 40016.02.2016 Frank Matillek
773620262144+11 543 64319.04.2012 Senji Yamashita
676754262144+11 528 41312.02.2012 Carlos Loureiro
525094262144+11 499 52618.01.2012 David Tomecko
361658262144+11 457 07529.10.2011 Michel Johnson
145310262144+11 353 26508.02.2011 Ricky L Hubbard
40734262144+11 208 47308.03.2011 Senji Yamashita

Підпроєкти Sieve

Підпроєкти Sieve (з англ. sieve — відсів) займаються відсіюванням кандидатів для підпроєктів LLR. Відсів складених кандидатів може бути набагато ефективніше за перевірку на простоту методом LLR. Із часом, коли глибина відсіву росте, ефективність відсіву падає і видалення складених чисел із кандидатів на простоту відбувається все рідше. Коли середній час на відсів кандидатів стає спвіставний з середнім часом на перевірку методом LLR, доцільність використання відсіву втрачається.

321 Prime Search Sieve

Підпроєкт 321 Prime Search Sieve займається відсівом для підпроєкту 321 Prime Search

Наразі підпроєкт поставлено на паузу, оскільки була досягнута оптимальна глибина відсіву.

Cullen/Woodall Sieve

Підпроєкт Cullen/Woodall Sieve займається відсівом для Cullen та Woodall Prime Search

Наразі підпроєкт поставлено на паузу, оптимальна глибина відсіву у 2500T була досягнута навесні 2012.

Generalized Cullen/Woodall Sieve

Підпроєкт Generalized Cullen/Woodall Sieve займається відсівом для Generalized Cullen/Woodall Prime Search

Proth Prime Search Sieve

Підпроєкт Proth Prime Search Sieve займається відсівом для Proth Prime Search

Sierpinski (ESP/PSP/SoB) Sieve

Підпроєкт об'єднує зусилля з відсіву для підпроєктів Seventeen or Bust, Prime Sierpinski Project, Extended Sierpinski Project

Відсів для Seventeen or Bust та Prime Sierpinski Project поставлено на паузу, оскільки була досягнута оптимальна глибина відсіву.

Відсів Extended Sierpinski Project Sieve для Extended Sierpinski Project розпочато 29 червня 2014 року.

Наразі підпроєкт поставлено на паузу, оптимальна глибина відсіву для Extended Sierpinski Project була досягнута у червні 2016 року.

The Riesel Problem Sieve

Підпроєкт The Riesel Problem Sieve займається відсівом для The Riesel Problem

Наразі підпроєкт поставлено на паузу, оскільки була досягнута оптимальна глибина відсіву.

Project Staging Area (PSA)

Від початку PSA було створено задля дослідження, тестування та підготовки майбутніх BOINC підпроєктів для PrimeGrid. У PSA досі ведеться пошук простих чисел інших форм, яких немає в підпроєктах BOINC. Існує два напрямки участі у PSA PRPNet та Manual Sieving:

  • PRPNet було розроблено Марком Роденкірхом (англ. Mark Rodenkirch), PRPNet дуже подібний до BOINC, але використовується тільки для пошуку простих чисел. PRPNet не має  (інтерфейсної оболонки). Натомість він стартує або в DOS вікні (Windows) або в командному терміналі (Linux). Все досить просто — скачай, розпакуй файл для твоєї ОС, відредагуй декілька рядків у файлі prpclient.ini і запускай.
  • Ручний відсів (Manual Sieving) — гарний відсів веде до кращого результату під час перевірки чисел на простоту. Деякі пошуки вимагають досить значних зусиль, тому для таких відсівів залучається спільнота. Є декілька проєктів, що координуються за допомогою постингу на форумі.

За участь в PSA існує ручна процедура нарахування очок в віртуальний підпроєкт PSA в BOINC.

Підпроєкти PRPNet

  1. 121 Prime Search
    • server=121:0:1:prpnet.primegrid.com:12001
  2. 27 Prime Search
    • server=27:0:1:prpnet.primegrid.com:12006
  3. Factorial Prime Search
    • server=FPS:0:1:prpnet.primegrid.com:12002
  4. Primorial Prime Search
    • server=PRS:0:1:prpnet.primegrid.com:12008
  5. Wieferich Prime Search (ПРИЗУПИНЕНО)
    • server=WIEFERICH:0:2:prpnet.primegrid.com:13000
  6. Wall-Sun-Sun Prime Search (ПРИЗУПИНЕНО)
    • server=WALLSUNSUN:0:2:prpnet.primegrid.com:13001

Підпроєкти Manual Sievieng

  1. Factorial Prime Search (Manual Sieve)
  2. Primorial Prime Search (Manual Sieve)
  3. Sierpinski/Riesel base 5 Project (Manual Sieve)
  4. Generalized Fermat Prime Search (Manual Sieve)
  5. PPS/RSP (Manual Sieve)

Бейджики

PrimeGrid нагороджує користувачів, що досягли певного рівня зароблених очок, бейджиками. Ці відзнаки не дають нікому ніякої переваги, але багато хто сприймає бейджі як знак певного досягнення. Нагорода бейджами використовується також для заохочення участі у менш популярних підпроєктах. Поточні рівні бейджів: Бронза (10'000) / Срібло (100'000) / Золото (500'000) / Аметист (1'000'000) / Рубін (2'000'000) / Бірюза (5'000'000) / Нефрит (10'000'000) / Сапфір (20'000'000) / Смарагд (50'000'000) / Подвійна Бронза (100'000'000) / Подвійне Срібло (200'000'000) / Подвійне Золото (500'000'000) / Подвійний Аметист (1'000'000'000) / Подвійний Рубін (2'000'000'000) / Подвійна Бірюза (5'000'000'000) / Подвійний Нефрит (10'000'000'000) / Подвійний Сапфір (20'000'000'000) / Подвійний Смарагд (50'000'000'000)

ПідпроєктБейджики
321 LLR
321 Sieve
AP
Cullen LLR
CW Sieve
ESP LLR
GCW LLR
GCW Sieve
GFN
PSP LLR
PSP Sieve
PSA
PPS LLR
PPS Sieve
SOB LLR
SGS LLR
SR5 LLR
TRP LLR
TRP Sieve
TPS LLR
Woodall LLR
WW

До квітня 2014 року між підпроєктами LLR та AP26/Sieve/GFN/PSA існувала різниця у рівнях для бейджиків одного кольору. 9 квітня 2014 року цю різницю було скасовано, у тому числі ретроспективно по відношенню до тих підпроєктів, що на той час вже були завершені або призупинені.

29 червня 2014 року розпочато ESP Sieve в підпроєкті PSP Sieve, перейменований на Sierpinski (ESP/PSP/SoB) Sieve, досягнення за яким використовуються для бейджа PSP Sieve.

18 липня 2014 року із PRPNet в BOINC перенесено підпроєкт PPS-Mega, досягнення за яким зараховуються для бейджа PPS LLR.

20 вересня 2016 року розпочато підпроєкт AP27 Search, досягнення за яким зараховуються для бейджа AP.

Див. також

Примітки

  1. перевіряються проєктом Seventeen or Bust
  2. Chris Caldwell, The Largest Known Primes

Джерела

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.