Розподіл Бернуллі

Розподіл Бернуллі розподіл ймовірностей дискретної випадкової величини названий на честь швейцарського математика Якоба Бернуллі[1], яка приймає значення з ймовірністю та значення з ймовірністю , тобто, вона є ймовірнісним розподілом будь-якого одиничного експерименту, який ставить так-ні питання.

Бернуллі
Параметри
Носій функції
Розподіл імовірностей
Функція розподілу ймовірностей (cdf)
Середнє
Медіана N/A
Мода
Дисперсія
Коефіцієнт асиметрії
Коефіцієнт ексцесу
Ентропія
Твірна функція моментів (mgf)
Характеристична функція
Генератриса (pgf)

Визначення

Дискретна випадкова величина називається такою, що має розподіл Бернуллі, якщо її закон розподілу має вигляд: , де  — параметр, що визначає розподіл, .

Позначається .

Функція розподілу має вигляд:

.

Числові характеристики

Математичне сподівання:

.

Дисперсія:

.

Зв'язок з іншими розподілами

Нехай незалежні випадкові величини мають розподіл Бернуллі з параметром p, тобто , тоді випадкова величина має біноміальний розподіл з параметрами p, n, тобто .

Див. також

  1. James Victor Uspensky: Introduction to Mathematical Probability, McGraw-Hill, New York 1937, page 45
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.