Функція розподілу ймовірностей
Функція розподілу ймовірностей (ФРІ[1][2]) — в теорії ймовірностей це функція, яка повністю описує розподіл ймовірностей випадкової величини.
Нехай — ймовірнісний простір, в якому — множина елементарних подій, — сукупність підмножин , що утворюють -алгебру, множини з називаються випадковими подіями, — міра на , що задовольняє умову . Функція , визначена рівністю
,
називається функцією розподілу ймовірностей або кумулятивною функцією розподілу ймовірностей випадкової величини ξ. Вираз в правій частині рівності є ймовірністю того, що випадкова величина набуває значень менших або рівних .
Властивості
Якщо є дискретною випадковою величиною, що набуває значень із ймовірністю , то функція розподілу для буде розривною в точках і неперервною поміж ними:
Легко бачити, що:
- не спадає на всій числовій прямій.
- неперервна справа.
- .
- .
З властивостей ймовірності випливає, що для всіх і для всіх , таких що матимуть місце співвідношення:
- ;
- ;
- ;
- ;
- ;
- ;
- ;
- .
Числові характеристики
Характеристики одновимірних розподілів
Для одновимірних розподілів ймовірностей використовують такі числові характеристики:[3]
- Квантилі. Квантиль порядку одновимірного розподілу — це таке значення випадкової величини , для якого:
- — це медіана розподілу. Квантилі , , , децилі , , , та процентилі , , , ділять область змін на 4, 10, та 100 інтервалів, потрапляння в які мають однакові ймовірності.
- Квантилі існують в кожного розподілу ймовірностей, але вони не обов'язково однозначно визначені. Таблиці квантилів застосовують в статистиці.
- Характеристики положення (центру розподілу).
- Математичне сподівання.
- Медіана.
- Мода. Мода неперервного розподілу — це точка максимуму щільності розподілу ймовірностей. Мода дискретного розподілу це таке спектральне значення випадкової величини, що наступне та попереднє значення мають менші ймовірності.
- Розподіли, що мають дві або більше мод називають двомодальними, тримодальними, або багатомодальними.
- Характеристики розсіяння.
- Дисперсія.
- Середнє квадратичне відхилення (стандартне відхилення).
- Коефіцієнт варіації.
- Середнє абсолютне відхилення.
- Медіана абсолютних відхилень
- Міжквартильний розмах та (10-90)-процентильна широта.
- Розмах (різниця між найбільшим та найменшим спектральним значенням).
- Напівширина.
- Характеристики асиметрії та ексцесу.
- Коефіцієнт асиметрії.
- Коефіцієнт ексцесу.
- Критерій Пірсона асиметрії одномодального розподілу.
Посилання
- Кравчук, С. О. (2009). Модель імовірності помилки в багатоантенній кооперативній ретрансляційній системі. Збірник наукових праць (Київ: ВІТІ НТУУ «КПІ») (2).
- Северина, С. С. (2019). Дослідження та розробка методів прогнозування з використанням імовірнісних нейронних мереж (магістерська атестаційна праця). Харків: ХНУРЕ.
- Корн Г., Корн Т. (1984). 14.7-4. Справочник по математике для научних работников и инженеров (рос.) (вид. друге). Москва: Наука.
Література
- Скороход А.В. (1990). Лекції з теорії випадкових процесів (українська). Київ: Либідь. ISBN 5-11-001701-8.
Див. також
- Функція щільності
- Нерівність Чебишева
- Емпірична функція розподілу
- Статистика Петуніна
- Функція Салема