Розподіл Фішера

Розподіл Фішера або F-розподіл у теорії імовірностей — двопараметричне сімейство абсолютно неперервних розподілів. F-розподіл часто зустрічається як розподіл тестової статистики коли нульова гіпотеза вірна, особливо в тесті відношення правдоподібності, найважливіший випадок аналіз дисперсії (див. F-тест).

Розподіл Фішера
Функція розподілу ймовірностей
Параметри ступені свободи
Носій функції
Розподіл імовірностей
Функція розподілу ймовірностей (cdf)
Середнє для
Мода для
Дисперсія для
Коефіцієнт асиметрії
для
Коефіцієнт ексцесу див. текст
Твірна функція моментів (mgf) не існує, raw moments defined elsewhere[1][2]
Характеристична функція див. текст

Визначення

Нехай  — дві незалежні випадкові величини, що мають розподіл хі-квадрат: , де . Тоді розподіл випадкової величини

,

називається розподілом Фішера зі ступенями свободи і . Пишуть .

Щільність випадкової величини з F-розподілом з параметрами задається формулою:

для дійсного числа , тут d1 та d2 цілі додатні числа, а B — Бета-функція.

Моменти

Математичне очікування і дисперсія випадкової величини, що має розподіл Фішера, мають вигляд:

, якщо ,
, якщо .

Властивості розподілу Фішера

  • Якщо , то
.
  • Розподіл Фішера збігається до одиниці: якщо , то
по розподілі при ,

де  — дельта-функція в одиниці, тобто розподіл випадкової величини-константи .

Зв'язок з іншими розподілами

  • Якщо , то випадкові величини збігаються по розподілу до при .

Див. також

Джерела

  1. Johnson, Norman Lloyd; Samuel Kotz, N. Balakrishnan (1995). Continuous Univariate Distributions, Volume 2 (Second Edition, Section 27). Wiley. ISBN 0-471-58494-0.(англ.)
  2. Abramowitz, Milton; Stegun, Irene A., ред. (1965). Chapter. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover. ISBN 978-0486612720. MR0167642. (англ.)
  • Глосарій термінів з хімії // Й.Опейда, О.Швайка. Ін-т фізико-органічної хімії та вуглехімії ім. Л.М.Литвиненка НАН України, Донецький національний університет — Донецьк: «Вебер», 2008. — 758 с. — ISBN 978-966-335-206-0
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.