Геометричне перетворення

У математиці геометричне перетворення - це будь-яка бієкція множини до себе (або до іншої такої множини) з деякою помітною геометричною основою.[1] Більш конкретно, це функція, домен і діапазон якої є наборами точок - найчастіше обома або обидва - така, що функція є ін'єктивною, щоб існувала її обернена . [2] До вивчення геометрії можна підходити шляхом вивчення цих перетворень. [3]

Геометричні перетворення можна класифікувати за розмірністю їх наборів операндів (таким чином розрізняючи, скажімо, площинні перетворення та просторові перетворення). Їх також можна класифікувати за властивостями, які вони зберігають:

Кожен із цих класів містить попередній. [8]

  • Дифеоморфізми (bidifferentiable перетворення) є перетворенням, як афінні в першому порядку; вони містять попередні як особливі випадки і можуть бути додатково уточнені. [9]
  • Конформні перетворення зберігають кути і є, у першому порядку, подібністю.
  • Еквіаріальні перетворення, збереження площ у площинному випадку або об’ємів у тривимірному випадку. і є, у першому порядку, афінними перетвореннями детермінанти 1.
  • Гомеоморфізми (двосторонні перетворення) зберігають околиці точок.

Перетворення одного типу утворюють групи, які можуть бути підгрупами інших груп перетворень.

Протилежні групові дії

Багато геометричних перетворень виражаються за допомогою лінійної алгебри. Бієктивні лінійні перетворення (бієкція) - це елементи загальної лінійної групи . Лінійне перетворення A не є особливим. Для вектора рядків v матричний добуток vA дає інший вектор рядка w = vA .

Транспонування вектора рядка v є вектором стовпця v T, а транзакція вищевказаної рівності - Тут A T забезпечує ліву дію на вектори стовпців.

У геометрії перетворень є композиції AB . Починаючи з вектора рядка v, правильною дією складеного перетворення є w = vAB . Після транспонування

Таким чином, для AB пов'язана дія лівої групи є При вивченні протилежних груп розрізняють дії протилежних груп, оскільки єдиними групами, для яких ці протилежності рівні, є комутативні групи.

Примітки

Літератури

  1. The Definitive Glossary of Higher Mathematical Jargon — Transformation. Math Vault (амер.). 1 серпня 2019. Процитовано 2 травня 2020.
  2. Zalman Usiskin, Anthony L. Peressini, Elena MarchisottoMathematics for High School Teachers: An Advanced Perspective, page 84.
  3. Venema, Gerard A. (2006). Foundations of Geometry. Pearson Prentice Hall. с. 285. ISBN 9780131437005.
  4. Geometry Translation. www.mathsisfun.com. Процитовано 2 травня 2020.
  5. Geometric Transformations — Euclidean Transformations. pages.mtu.edu. Процитовано 2 травня 2020.
  6. Transformations. www.mathsisfun.com. Процитовано 2 травня 2020.
  7. Geometric Transformations — Affine Transformations. pages.mtu.edu. Процитовано 2 травня 2020.
  8. Leland Wilkinson, D. Wills, D. Rope, A. Norton, R. Dubbs – Geometric transformation, p. 182, at Google Books
  9. stevecheng (13 березня 2013). first fundamental form (PDF). planetmath.org. Процитовано 1 жовтня 2014.

Для ознайомлення

  • Adler, Irving (2012) [1966]. A New Look at Geometry. Dover. ISBN 978-0-486-49851-5.978-0-486-49851-5
  • Дієнес, З.П . ; Golding, EW (1967). Геометрія через трансформації (3 т. ): Геометрія спотворень, Геометрія конгруентності та Групи та координати . Нью-Йорк: Гердер і Гердер.
  • Девід Ганс - Трансформації та геометрії .
  • Hilbert, David; Cohn-Vossen, Stephan (1952). Geometry and the Imagination (вид. 2nd). Chelsea. ISBN 0-8284-1087-9.0-8284-1087-9
  • Джон Макклірі - Геометрія з диференційованої точки зору .
  • Модєнов, П.С .; Пархоменко, А.С. (1965). Геометричні перетворення (2 т. ): Евклідові та афінні перетворення та проективні перетворення . Нью-Йорк: Академічна преса.
  • А. Н. Преслі - Елементарна диференціальна геометрія .
  • Яглом, І.М. (1962, 1968, 1973, 2009). Геометричні перетворення (4 т. ). Випадковий будинок (I, II та III), MAA (I, II, III та IV).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.