Диференціал Абеля
Абеля диференціал — голоморфний, або мероморфний диференціал на компактній, або замкнутій поверхні Рімана S.
Нехай g — рід поверхні S; a1b1a2b2..agbg — цикли канонічної бази S. В залежності від характеру особливостей розрізняють диференціали Абеля трьох типів: I, II, III причому мають місце строгі включення: . Диференціал Абеля І-го роду — це голоморфні всюди на S диференціали 1-го порядку, котрі в околі U кожної точки мають вигляд , де — локальна уніформізуюча змінна в U, , а p(z) — голоморфна, або регулярна аналітична функція на U. Додавання і множення диференціалів Абеля визначаються звичайними правилами(див. диференціал).
Диференціали Абеля І роду формують векторний простір розмірності g. Після введення скалярного добутку
,
де — зовнішній добуток на зірково спряжений диференціал , перетворюється в Гільбертів простір.
Нехай — А- і В- періоди другого роду диференціала Абеля. І роду , тобто інтеграли
. (1)
Тоді справедливе наступне співвідношення:
Нехай — періоди другого роду диференціала Абеля І-го роду , то
. (2)
Співвідношення (1) і (2) називають білінійними відношеннями Рімана для диференціала Абеля І роду. Канонічна база диференціала Абеля І роду, тобто канонічна база простору , вибирається таким чином, щоб
,
де — символ Кронекера. При цьому матриця , B-періодів
симетрична, а матриця уявних частин додатно визначена. Диференціал Абеля І роду, у якого всі А- або В- періоди тотожно рівні нулю рівний нулю. Якщо всі періоди диференціала Абеля І роду дійсні, то .
Диференціали Абеля ІІ і ІІІ роду відносяться до мероморфних диференціалів, тобто до таких аналітичних диференціалів, котрі мають на S не більш ніж скінченну множину особливостей типу полюсів з локальним представленням
, (3)
де f(z) — регулярна функція, n — порядок полюсу(якщо ), a-n — лишок в даному полюсі. При n=1 полюс називається простим. Диференціал Абеля ІІ роду — це мероморфні диференціали, в яких всі лишки дорівнюють нулю. Тобто їхнє локальне представлення має такий вигляд:
.
Диференціал Абеля ІІІ роду — це диференціал Абеля довільного вигляду.
Якщо — довільний диференціал Абеля з А-періодами , то диференціал Абеля має нульові А-періоди і називається нормованим. Якщо P1 i P2 — довільні точки S, то можна побудувати диференціал Абеля з особливостями в P1 і в P2, який називається нормальним диференціалом Абеля ІІІ роду. Нехай — довільний диференціал Абеля з лишками в точках відповідно, причому . Якщо така довільна точка на S то можна представити у вигляді лінійної комбінації нормованого диференціала Абеля ІІ роду , скінченного числа нормальних диференціалів Абеля і базисних диференціалів Абеля І роду :
.
Нехай — диференціал Абеля ІІІ роду, що має лише прості полюси, з лишками в точках , а — довільний диференціал Абеля І роду;
причому цикли не проходять через полюси . Нехай точка не лежить на циклах і , а — шлях від до . Тоді маємо білінійні співвідношення для диференціал Абеля І і ІІІ роду:
.
Аналогічні співвідношення існують і між диференціалами Абеля І і ІІ роду.
Довільний диференціал Абеля ІІІ роду, окрім А- і В- періодів (циклічних), має ще полярні періоди виду вздовж циклів, гомологічних нулю, але таких, що охоплюють полюси . Таким чином для довільного циклу маємо:
де — цілі числа.
Джерела
- Математическая энциклопедия. В пяти томах. Том 1./ Под ред. И. М. Виноградова. М.: Советская энциклопедия, 1985
- Спрингер Дж., Введение в теорию римановых поверхностей, пер. с англ., М., 1960;
- Неванлинра Р., Униформизация, пер. с нем., М., 1955;
- Чеботарев Н. Г., Теория алгебраических функций, М.— Л., 1948.