Конформно-евклідова модель

Конфо́рмно-евклі́дова моде́ль або моде́ль Пуанкаре́ — модель простору Лобачевського. Існують різновиди моделі — в колі (стереографічна проекція) і на півплощині для планіметрії Лобачевського, а також у кулі і в півпросторі — для стереометрії Лобачевського, відповідно.

Замощення площини Лобачевського правильними трикутниками.

Конформно-евклідова модель має таку назву тому, що гіперболічні кути дорівнюють відповідним кутам на евклідовій площині між відповідними півдотичними[1]. Для проєктивної моделі, гіперболічні кути дорівнюють евклідовим кутам лише у виключних випадках, наприклад, така рівність є у початку координат проєктивної моделі.

Історія

Цю модель, як і проективну модель і модель псевдосфери, запропонував Еудженіо Бельтрамі.[2] Метрику в конформно-евклідовій моделі використано також у знаменитій лекції Рімана «Про гіпотези, що лежать в основі геометрії», але зв'язок з геометрією Лобачевського виявив саме Бельтрамі. Згодом Анрі Пуанкаре виявив зв'язки цієї моделі з задачами теорії функцій комплексної змінної, що дало одне з перших серйозних застосувань геометрії Лобачевського.

Моделі в крузі і в кулі

Конформно-евклідова модель у крузі.

За площину Лобачевського приймається внутрішність круга (див. мал.) в евклідовому просторі; межа даного круга (коло) називається «абсолютом». Роль геодезичних ліній виконують дуги кіл , перпендикулярних до абсолюту, і його діаметри[3]; роль рухів — перетворення, одержувані комбінаціями інверсій відносно кіл, дуги яких служать прямими.

Метрика площини Лобачевського в конформно-евклідовій моделі в одиничному крузі є:

де і  вісь абсцис і ординат, відповідно[4].

Аналогічно, для конформно-евклідової моделі в кулі роль абсолюту виконує обмежувальна сфера в тривимірному евклідовому просторі, а простором Лобачевского є внутрішність кулі.

Відстані

У комплексних координатах на одиничному колі відстані можна обчислити за допомогою такої формули:

Відстань можна виразити через подвійне відношення. Якщо на дузі , точки розташовано в такому порядку: , , , то відстань між точками і , у геометрії Лобачевського дорівнює

.

Моделі на півплощині й у півпросторі

В моделі Пуанкаре в півплощині за площину Лобачевського приймається верхня півплощина. Пряма, що обмежує півплощину (тобто вісь абсцис), називається «абсолютом». Роль прямих виконують півкола з центрами на абсолюті, що містяться в цій півплощині, і перпендикулярні до абсолюту промені, що починаються на ньому (тобто вертикальні промені). Роль рухів — перетворення, одержувані композицією скінченного числа інверсій із центром на абсолюті і осьових симетрій, осі яких перпендикулярні до абсолюту.

Метрика площини Лобачевського в конформно-евклідовій моделі у верхній півплощині має вигляд: [4], де і  — прямокутні координати, відповідно паралельно і перпендикулярно до абсолюту.

Відповідно, в конформно-евклідовій моделі в півпросторі роль абсолюту виконує площина в тривимірному евклідовому просторі, а простором Лобачевського є півпростір, що лежить на цій площині.

Див. також

Примітка

  1. Попов А. Г. Псевдосферические поверхности и некоторые задачи математической физики
  2. Eugenio Beltrami, Teoria fondamentale degli spazii di curvatura costante, Annali. di Mat., ser II, 2 (1868), 232—255.
  3. Загалом можна не виокремлювати діаметри, оскільки, всі вказані об'єкти є узагальненими прямими, які можна відобразити одну на іншу за допомогою руху
  4. Буяло С. В. Курс лекций «Асимптотическая геометрия метрических пространств» весна 2004.

Література

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.