Картина Гейзенберга
Картина Гейзенберга — один із методів опису квантовомеханічних явищ. Ідея методу полягає в тому, що залежність від часу переноситься з хвильових функцій на оператори фізичних величин, на відміну від картини Шредінгера, де залежність від часу закладається до хвильових функцій. Така картина дає явну залежність операторів від часу, а хвильові функції залишаються сталими.
Квантова механіка |
---|
Вступ · Історія Математичні основи |
Фундаментальні поняття Вектор стану · Хвильова функція · Суперпозиція · Заплутаність · Вимірювання · Невизначеність · Виключення Паулі · Дуалізм · Декогеренція · Теорема Еренфеста · Тунелювання |
Експерименти Дослід Девіссона — Джермера · Дослід Штерна-Герлаха · Кіт Шредінгера · Дослід Поппера · Дослід Юнга · Перевірка нерівностей Белла · Фотоефект · Ефект Комптона · Ефект Рамзауера |
Інтерпретації Багатосвітова · Байєсівська · Бомівська механіка · Відносна · Копенгагенська · Об'єктивний колапс · Статистична · Стохастична · Теорія прихованих параметрів · Теорія узгоджених історій · Транзакційна |
Наближені методи |
Відомі науковці |
Перехід до картини Гейзенберга
Якщо ввести унітарний оператор еволюції , що діє за правилом:
то можна записати середнє значення деякого оператора в стані таким чином:
Таким чином, залежність від часу переноситься з хвильової функції на оператор:
Рівняння руху для операторів
Якщо записати рівняння Шредінгера:
і вважати, що гамільтоніан не залежить від часу, то оператор еволюції має такий вигляд:
Далі, якщо взяти повну похідну від оператора за часом, то:
Остаточно, якщо записати отриманий вираз через комутатор, маємо рівняння руху для операторів:
Якщо оператор явно не залежить від часу, рівняння руху має вигляд:
звідки можна зробити такий висновок: якщо оператор фізичної величини, який явно не залежить від часу, комутує з гамільтоніаном , то відповідна фізична величина зберігається.
Див. також
Література
- Вакарчук І. О. Квантова механіка. — 4-е видання, доповнене. — Л. : ЛНУ ім. Івана Франка, 2012. — 872 с.
- Мессиа А. Квантовая механика. — М. : Наука, 1978. — Т. 1. — 480 с.