Інтеграл вздовж траєкторій
Інтеграл вздовж траєкторій — математичний оператор, який використовується у Фейнмановому формулюванні квантової механіки.
Квантова механіка |
---|
Вступ · Історія Математичні основи |
Фундаментальні поняття Вектор стану · Хвильова функція · Суперпозиція · Заплутаність · Вимірювання · Невизначеність · Виключення Паулі · Дуалізм · Декогеренція · Теорема Еренфеста · Тунелювання |
Експерименти Дослід Девіссона — Джермера · Дослід Штерна-Герлаха · Кіт Шредінгера · Дослід Поппера · Дослід Юнга · Перевірка нерівностей Белла · Фотоефект · Ефект Комптона · Ефект Рамзауера |
Інтерпретації Багатосвітова · Байєсівська · Бомівська механіка · Відносна · Копенгагенська · Об'єктивний колапс · Статистична · Стохастична · Теорія прихованих параметрів · Теорія узгоджених історій · Транзакційна |
Наближені методи |
Відомі науковці |
Формальне визначення інтегралу вздовж траєкторій дається формулою
- ,
де , — множина всіх траєкторій, які сполучають початкову точку та кінцеву точку , m — маса квантової частинки, — зведена стала Планка.
Постулатом Фейманового формулювання квантової механіки є те, що пропагатор задається інтегралом вздовж траєкторій:
- ,
де — класична дія.
Якісна інтерпретація
На відміну від звичайного інтеграла, в якому підсумовуються значення функції на відрізку, в інтегралі вздовж траєкторій підсумовуються значення функції вздовж усіх можливих кривих, які сполучають початкову й кінцеву точку. В рамках Фейнманового формулювання квантової механіки такий інтеграл визначає амплітуду ймовірності того, що квантова частинка переміститься з початкової точки в кінцеву.
Якщо в класичній механіці реалізується та з траєкторій, якій відповідає найменше значення дії, то в квантовій механіці свій вклад в ймовірність переходу частинки з однієї точки в іншу вносять усі можливі криві, які сполучають ці точки. Оскільки в квантовій механіці визначається не ймовірність переходу, а амплітуда ймовірності, то внески різних траєкторій інтерферують.
Інтеграл вздовж траєкторій у фазовому просторі
Квантову механіку можна сформулювати через інтеграли вздовж траєкторій, використовуючи також канонічні змінні — координату та імпульс. Пропагатор частинки задається при такому підході через співвідношення:
- ,
де — функція Гамільтона.
Інтегрування проводиться вздовж усіх траєкторій у фазовому просторі із фіксованим значенням координати в початковій та кінцевій точках.
Статистична механіка
В квантовій статистичній механіці зележна від температури матриця густини задовольняє рівнянню
- ,
де , — стала Больцмана.
Формальний розв'язок цього рівняння
- .
Статистична сума дорівнює сліду від матриці густини
- .
Вводячи умовний «час» , де — зведена стала Планка, і розбиваючи інтервал [0, U] на дрібні інтервали, можна записати
- ,
розглядаючи всі можливі траєкторії, якими система може переміститися з початкового стану при нескінченно високій температурі в кінцевий стан при температурі, що визначається значенням U.
Історія
Формулювання квантової механіки через інтеграли вздовж траєкторій розробив у 1948 році Річард Фейнман.
Література
- Вакарчук І.О. Квантова механіка. — 4-е видання, доповнене. — Л. : ЛНУ ім. Івана Франка, 2012. — 872 с.
- Юхновський І.Р. Основи квантової механіки. — К. : Либідь, 2002. — 392 с.
- Зи Э. Квантовая теория поля в двух словах. — Ижевск : РХД, 2009. — 632 с.
- Зинн-Жюстен Ж. Континуальный интеграл в квантовой механике. — М. : Физматлит, 2010. — 360 с.
- Фейнман Р., Хибс А. Квантовая механика и интегралы по траекториям. — М. : Мир, 1968. — 384 с.
- Simon B. Functional Integration and Quantum Physics. — Academic Press, 1979.