Теорема Еренфеста
Теоре́ма Еренфе́ста (Рівняння Еренфеста) — твердження про вид рівнянь квантової механіки для середніх значень спостережуваних величин гамільтонових систем. Ці рівняння вперше отримані П. Еренфестом у 1927 році.
Квантова механіка |
---|
Вступ · Історія Математичні основи |
Фундаментальні поняття Вектор стану · Хвильова функція · Суперпозиція · Заплутаність · Вимірювання · Невизначеність · Виключення Паулі · Дуалізм · Декогеренція · Теорема Еренфеста · Тунелювання |
Експерименти Дослід Девіссона — Джермера · Дослід Штерна-Герлаха · Кіт Шредінгера · Дослід Поппера · Дослід Юнга · Перевірка нерівностей Белла · Фотоефект · Ефект Комптона · Ефект Рамзауера |
Інтерпретації Багатосвітова · Байєсівська · Бомівська механіка · Відносна · Копенгагенська · Об'єктивний колапс · Статистична · Стохастична · Теорія прихованих параметрів · Теорія узгоджених історій · Транзакційна |
Наближені методи |
Відомі науковці |
В загальному випадку можуть бути записані у наступній формі:
де A — деякий квантовомеханічний оператор (наприклад, оператор імпульсу) а — середнє значення відповідної фізичної величини. Теорема Еренфеста є обов'язкова в представленні Гейзенберга квантової механіки. Вона вказує на відповідність квантовомеханічних співвідношень та законів — їх класичним аналогам для середніх значень фізичних величин.
Теорема Еренфеста тісно пов'язана з теоремою Ліувіля із механіки Гамільтона, що містить дужки Пуассона замість комутатора. В загальному випадку можна сформулювати наступне правило: кожна теорема квантової механіки, що містить комутатор, може бути приведена до її класичного аналога шляхом заміни комутатора на «дужки Пуассона», помноживши їх на коефіцієнт .
Виведення
Нехай деяка система знаходиться в квантовому стані . Якщо ми знаємо похідну по часу від очікуваної величини A, тоді за визначенням будемо мати:
де інтегрування проводиться по всьому просторі. Якщо використати при цьому рівняння Шредінгера, тоді знайдемо:
та
Слід відзначити, що оскільки гамільтоніан є ермітовий. Підставляючи це у приведене вище рівняння, знаходимо
Досить часто (проте не завжди) оператор A не залежить від часу, так що його похідна по часу рівна нулю і ми можемо знехтувати останнім членом.
Приклад використання
В загальному випадку для руху масивної частки в певному потенціалі, гамільтоніан системи можна подати у вигляді:
де x координата частки. Якщо ми хочемо узнати моментальну зміну імпульсу p, тоді теорема Еренфеста дає:
оскільки p комутує із самим собою в координатному просторі так, що оператор імпульсу є , тоді . Також
Використовуючи стандартне правило диференціювання добутку, знаходимо
що за формою збігається з другим законом Ньютона. Це є типовий приклад т.з. принципу відповідності, який стверджує, що у випадку багатьох часток другий закон Ньютона формулюється у формі очікуваної величини для руху однієї частки.
Примітки
- де оператор Гамільтона, а H є представлення гамільтоніану в координатному просторі (так само, як і у випадку для похідної вище). Іншими словами, ми використали приєднаний оператор для всього рівняння Шредінгера, котрий змінив порядок операцій H та .
Література
- Шпольский Э. В. Атомная физика (в 2-х томах). — М. : Наука, 1974. — Т. 2. — 448 с.