Кора головного мозку
Кора́ головно́го мо́зку — зовнішній шар нервової тканини головного мозку людини й інших видів ссавців. Кора головного мозку повздовжною щілиною (лат. fissura longitudinalis) поділена на дві великих частини, які називаються півкулями мозку або гемісферами — правою й лівою. Обидві гемісфери з'єднані знизу мозолистим тілом (лат. corpus callosum). Кора головного мозку відіграє ключову роль у виконанні мозком таких функцій як пам'ять, увага, сприйняття, мислення, мова, свідомість.
Кора головного мозку | |
---|---|
Зовнішній шар кори виділений фіолетовим. | |
Нейрони кори головного мозку, зафарбовані методом Гольджі | |
Деталі | |
Частина від | Головний мозок людини |
Ідентифікатори | |
Латина | Cortex cerebri |
MeSH | D002540 |
NeuroNames | 39 |
NeuroLex ID | birnlex_1494 |
TA98 | A14.1.09.003 і A14.1.09.301 |
TA2 | 5527 і 5528 |
FMA | 61830[1] |
Анатомічна термінологія |
У великих ссавців кора головного мозку збирається в брижі, що дає більшу площу її поверхні в тому самому об'ємі черепа. Брижі називаються звивинами, а між ними пролягають борозни, й глибші — щілини. Головний мозок людини на дві третини ховається у борознах і щілинах. Кора головного мозку має товщину від 2 до 4 мм.[2]
Кора утворена сірою речовиною, яка складається в основному з тіл клітин, в основному, астроцитів, та капілярів. Тому навіть візуально тканина кори відрізняється від білої речовини, яка залягає глибше й складається в основному з білих мієлінових волокон — аксонів нейронів.
Зовнішня частина кори, так званий неокортекс (лат. neocortex), найбільш еволюційно молода частина кори у ссавців, має до шести клітинних шарів. Нейрони різних шарів поєднані між собою в кортикальні мініколонки. Різні ділянки кори, відомі як поля Бродмана, різняться між собою за цитоархітектонікою (гістологічною структурою) й функціональною роллю в чутливості, мисленні, свідомості й пізнанні.[3][4]
Розвиток
Кора головного мозку розвивається з ембріональної ектодерми, а саме, з передньої частини нервової пластинки[5][6]. [31] Нервова пластинка згортається і формує нервову трубку. З порожнини всередині нервової трубки виникає система шлуночків, а з епітеліальних клітин її стінок — нейрони й глія. З фронтальної частини нервової пластинки формується передній мозок, великі півкулі головного мозку і потім — кора [6][7]
Зона росту кортикальних нейронів, так звана зона «S» знаходиться поруч із системою шлуночків головного мозку. Ця зона містить клітини-попередники, які пізніше в процесі діференціації стають гліальними клітинами і нейронами.[8] Гліальні волокна, утворені в перших діленнях клітин-попередників, радіально орієнтовані, охоплюють товщину кори з шлуночкової зони до м'якої мозкової оболони (лат. Pia mater) й утворюють «рейки» для міграції нейронів назовні від шлуночкової зони.[9][10][11] Ці дочірні нервові клітини стають пірамідними клітинами кори.[12] Процес розвитку чітко регламентований в часі й керується сотнями генів і механізмами енергорегуляції.[13] В процесі розвитку формується й пошарова структура кори.[14][15][16]
Клітинні шари
Кожен з клітинних шарів має характерну щільність нервових клітин і зв'язків з іншими ділянками. Існують прямі зв'язки між різними ділянками кори й непрямі зв'язки, наприклад, через таламус. Один з типових зразків кортикального розшарування — смужка Дженнарі в первинній зоровій корі. Це тяж візуально білішої тканини, помітний неозброєним оком в основі шпорної борозни (лат. sulcus calcarinus) в потиличній долі (лат. lobus occipitalis). Смужка Дженнарі складається з аксонів, які несуть візуальну інформацію з таламуса в четвертий шар зорової кори.
Зафарбування колонок клітин та їхніх аксонів дозволило нейроанатомам початку ХХ ст. зробити детальний опис пошарової структури кори у різних видів. Після робіт Корбініана Бродмана (1909) нейрони в корі були згруповані в шість основних шарів — від зовнішніх, які прилягають до м'якої мозкової оболони; до внутрішніх, що межують з білою речовиною:
- Шар I, молекулярний шар, містить кілька розрізнених нейронів і складається переважно з вертикально (апікально) орієнтованих дендритів пірамідних нейронів і горизонтально орієнтованих аксонів, та гліальних клітин.[17] Протягом розвитку в цьому шарі присутні клітини Кахаля-Ретціуса[18] та субпіальні клітини (клітини, що знаходяться одразу під (м'якою мозковою оболоною — лат. pia mater) зернистого шару[19]. Також тут іноді зустрічаються шипуваті астроцити. Апікальні пучки дендритів, як вважається, мають велике значення для реципрокних з'єднань («зворотного зв'язку») в корі головного мозку, й беруть участь у виконанні функцій асоціативного навчання й уваги.[20][21][22][23]
- Шар II, зовнішній гранулярний шар, містить малі пірамідні нейрони й численні зірчасті нейрони (дендрити яких виходять з різних боків тіла клітини, утворюючи форму зірки).
- Шар III, зовнішній пірамідний шар, містить переважно малі й середні пірамідні й непірамідні нейрони з вертикально орієнтованими інтракортикальними (тими, які в межах кори). Клітинні шари з І по ІІІ — головні мішені внутрішньопівкульних аферентів, а ІІІ-й шар — головне джерело кортико-кортикальних еферентів.
- Шар IV, внутрішній гранулярний шар, містить різні типи пірамідних і зірчастих нейронів і слугує головною мішенню таламокортикальних (від таламуса до кори) аферентних волокон.
- Шар V, внутрішній пірамідний шар, містить великі пірамідні нейрони, аксони яких залишають кору й прямують до підкіркових структур (таких як базальні ганглії). У первинній моторній корі цей шар містить клітини Беца, аксони яких йдуть через внутрішню капсулу, стовбур мозку та спинний мозок і формують кортикоспінальний шлях, який здійснює контроль довільних рухів.
- Шар VI, поліморфний або мультиформний шар, містить трохи пірамідних нейронів і багато поліморфних нейронів ; еферентні волокна з цього шару йдуть до таламуса, встановлюючи з зворотній (реципрокний) зв'язок між таламусом і корою.[24][25][25].
Кортикальні шари не просто складовані один на один. Існують характерні зв'язки між різними шарами й типами клітин у них, які пронизують усю товщу кори. Базовою функціональною одиницею кори вважається кортикальна мініколонка (вертикальна колонка нейронів в корі головного мозку, яка проходить через її шари. Мініколонка включає від 80 до 120 нейронів в усіх зонах мозку, окрім первинної зорової кори приматів)[26][27].
Ділянки кори без четвертого (внутрішнього гранулярного) шару називаються агранулярними, з рудиментарним гранулярним шаром — дизгранулярними.[28] Швидкість обробки інформації в межах кожного шару різна. Так у ІІ і ІІІ — повільна, з частотою (2 Hz) у той час коли в частота осціляції в шарі V набагато швидше — 10–15 Hz.[29]
Зони кори
Анатомічно кора може бути поділена на чотири частки, які мають назви відповідні до назв кісток черепа, що їх прикривають:
- Лобова частка (мозок), (лат. lobus frontalis)
- Скронева частка, (лат. lobus temporalis)
- Тім'яна частка, (лат. lobus parietalis)
- Потилична частка, (лат. lobus occipitalis)
- Латеральна (зовнішньо-бічна) поверхня кори головного мозку
- Медіальна (внутрішньо-бічна) поверхня кори головного мозку
З огляду на особливості ламінарної (пошарової) структури, кора поділяється на неокортекс, і алокортекс:
- Неокортекс (лат. neocortex; інші назви — ізокортекс, лат. isocortex та неопалліум, лат. neopallium) — частина зрілої кори головного мозку з шістьма клітинними шарами. Зразками неокортикальних ділянок — це Поле Бродмана 4, також відоме як первинна моторна кора, первинна зорова кора, або поле Бродмана 17. Неокортекс поділяється на два типи: ізокортекс (справжній неокортекс, зразки котрого, поля Бродмана 24,25 і 32 щойно розглянуті) і проізокортекс, який представляють, зокрема, поле Бродмана 24, поле Бродмана 25 і поле Бродмана 32
- Алокортекс (лат. allocortex) — частина кори з кількістю клітинних шарів менше шести, теж поділяється на частини: палеокортекс (лат. paleocortex) з тришаровою, архікортекс (лат. archicortex) з чотирьох-п'ятьох, та прилеглий до них періалокортекс (лат. periallocortex). Прикладами ділянок з такою пошаровою структурою є нюхова кора: склепінчаста звивина (лат. gyrus fornicatus) з крючком (лат. uncus), гіпокамп (лат. hippocampus) й ближні до нього структури.
Існує й «перехідна» (між алокортексом і неокортексом) кора, яка носить назву паралімбічної, де клітинні шари 2,3 та 4 зливаються. Ця зона містить проізокортекс (з неокортексу) і періалокортекс (з алокортексу).
Поля Бродмана
Різні ділянки кори залучені до виконання різних функцій. Побачити й зафіксувати цю різницю можна в різний спосіб — досліджуючи ураження певних ділянок, порівнюючи патерни електричної активності, використовуючи методики нейровізуалізації, вивчаючи клітинну структуру. На основі таких відмінностей дослідники класифікують ділянки кори.
Найбільш відомою й цітованою вже протягом століття є класифікація, яку створив у 1905—1909 рр німецький дослідник Корбініан Бродман. Він поділив кору головного мозку на 51 ділянку на основі цитоархітектоніки нейронів, який він вивчав у корі головного мозку за допомогою фарбування клітин за Ніслем. Бродман опублікував свої карти областей кори головного мозку у людини, мавп та інших видів у 1909 році[30].
Поля Бродмана активно й докладно обговорюються, дискутуються, уточнюються, і перейменуються протягом майже століття й залишаються найбільш широко відомими і часто цитованими структурами цитоархітектонічної організації кори головного мозку людини.
Багато з полів Бродмана, початково визначені виключно за їхньою нейрональною організацією, пізніше були асоційовані відповідно до кореляції з різними корковими функціями. Наприклад, Поля 3, 1 & 2 — первинна соматосенсорна кора; поле 4 є первинною моторною корою; поле 17 є первинною зоровою корою, а поля поля 41 і 42 найбільше корелюють із первинною слуховою корою. Визначення відповідності процесів Вищої нервової діяльності до ділянок кори головного мозку й прив'язка до конкретних полів Бродмана здійснюється за допомогою нейрофізіологічних досліджень, функціональної магнітнорезонансної томографії та інших методик (так як це було, наприклад, зроблено з прив'язкою зон Брока мовлення й мови до полів Бродмана 44 і 45). Однак, за допомогою функціональної візуалізації можна тільки приблизно визначити локалізацію активації мозкових процесів у полях Бродмана. А для точного визначення їхніх меж в кожному окремому мозку потрібно гістологічне дослідження.[31]
Товщина кори
У ссавців, видів з більшими розмірами мозку (в абсолютному вираженні, а не тільки по відношенню до розміру тіла), кора, як правило, має більшу товщину кору[32] . Діапазон, однак, не дуже великий. Найменші ссавці, такі як землерийки, мають товщину неокортексу приблизно 0,5 мм; а види з найбільшим мозком, такі як люди і китоподібні, мають товщину 2,3-2,8 мм. Існує приблизно логарифмічна залежність між вагою мозку і товщиною кори.[32]
Магніторезонансна томографія (МРТ) мозку робить можливими прижиттєві заміри товщини кори й порівнняння відносно до розмірів тіла. Товщина різних ділянок варіативна, але в цілому, сенсорні (чутливі) ділянки кори тонші за моторні (рухові).[33] В одному з досліджень показана залежність товщини кори від рівня інтелекту.[34] Інше дослідження показало більшу товщину кори осіб, що страждають на мігрень.[35][36] Щоправда, інші дослідження показують відсутність такого зв'язку.[37][38]
Звивини, борозни й щілини
Разом ці три елементи — звивини, борозни й щілини, створюють велику площу поверхні мозку людини та інших ссавців. При погляді на людський мозок, помітно, що дві третини поверхні приховані в пазах. Як борозни, так і щілини являють собою заглиблення в корі, але вони розрізняються за розміром. Борозна-це неглибокий паз, який оточує звивини. Щілина — це велика борозна, яка ділить мозок на частки, а також на дві півкулі як, наприклад медіальна поздовжня щілина[39]. Однак ця відмінність не завжди чітка. Наприклад, латеральна борозна також відома як бічна щілина і як «Сільвієва борозна» і «центральна борозна», також відома як Центральна щілина і як «Роландова борозна».
Це дуже важливо в умовах, коли розмір мозку обмежується внутрішнім розміром черепа. Збільшення поверхні кори головного мозку за допомогою системи звивин і борозен збільшує кількість клітин, які беруть участь у виконанні мозком таких функцій як пам'ять, увага, сприйняття, мислення, мова, свідомість.[40][41] [42]
Кровопостачання
Постачання артеріальної крові до головного мозку й кори, зокрема, відбувається з двох артеріальних басейнів — внутрішньої сонної і хребетної артерії. Кінцевий відділ внутрішньої сонної артерії розгалужується на гілки — передню мозкову й середню мозкову артерію. У нижніх (базальних) відділах мозку артерії утворюють Вілізієве коло, завдяки котрому відбувається перерозподіл артеріальної крові між артеріальними басейнами.
- Зовнішня поверхня головного мозку на якій позначені ділянки, що кровопостачаються мозковими артеріями. Ділянка позначена синім кольором відповідає передній мозковій артерії. Ділянка задньої мозкової артерії позначена жовтим
- Схема Вілізієвого кола та артерій головного мозку: Передня мозкова артерія - англ. Anterior cerebral artery; Середня мозкова артерія - англ. Middle cerebral artery; Задня мозкова артерія - англ. Posterior cerebral artery; Хребетна артерія - англ. Vertebral artery
Середня мозкова артерія
Середня мозкова артерія (лат. a. cerebri media) є найбільшою гілкою внутрішньої сонної артерії.[43][4] Порушення кровообігу в ній може призводити до розвитку ішемічного інсульту та синдрому середньої мозкової артерії з наступними симптомами:
- Параліч (плегія) або парез протилежних до ураження м'язів обличчя та руки
- Втрата сенсорної чутливості протилежних до ураження м'язів обличчя та руки
- Ураження домінантної півкулі (часто лівої) головного мозку та розвитку афазії Брока або афазії Верніке
- Ураження недомінантної півкулі (часто правої) головного мозку призводить до односторонньої просторової агнозії з протилежного до ураження боку
- Інфаркти в зоні середньої мозкової артерії призводять до déviation conjuguée, коли зіниці очей рухаються в бік сторони ураження головного мозку.
Передня мозкова артерія
Передня мозкова артерія — менша гілка внутрішньої сонної артерії. Досягнувши медіальної поверхні півкуль головного мозку, передня мозкова артерія йде до потиличної частки. Вона кровопостачає медіальні ділянки півкуль до рівня тім'яно-потиличної борозни, ділянку верхньої лобної звивини, ділянку тім'яної частки, а також ділянки нижніх медіальних відділів очноямкових звивин. Симптоми її ураження:
- Парез ноги або геміпарез з переважним ураженням ноги на протилежному боці.
- Закупорка парацентральної гілки зумовлює монопарез стопи, який нагадує периферичний парез. Можуть спостерігатися затримка або нетримання сечі. З'являються рефлекси орального автоматизму та хватальні феномени, патологічні стопні згинальні рефлекси: Россолімо, Бехтерева, Жуковського. Виникають зміни психічного стану, зумовлені ураженням лобової частки: зниження критики, пам'яті, немотивована поведінка.
Задня мозкова артерія
Задня мозкова артерія — парна судина, яка кровопостачає задні відділи мозку (потиличну частку). Має анастомоз з середньою мозковою артерією Її ураження призводять до:
- гомонімна (чи верхньоквадрантна) геміанопсія (випадіння частки поля зору)
- метаморфопсія (порушення зорового сприйняття величини або форми предметів і простору) і зорова агнозія,
- Алексія,
- Сенсорна афазія,
- Транзиторні (минучі) амнезії;
- Трубчастий зір,
- Кіркова сліпота (при збереженні реакції на світло),
- Прозопагнозія,
- Порушення орієнтації в просторі
- Втрата топографічної пам'яті
- Набута ахроматопсія — недостатність колірного зору
- Синдром Корсакова (порушення оперативної пам'яті)
- емоційно-афективні порушення
Див. також
Примітки
- Foundational Model of Anatomy
- Kandel, Eric R.; Schwartz, James H.; Jessell, Thomas M. (2000). Principles of Neural Science (вид. Fourth). United State of America: McGraw-Hill. с. 324. ISBN 0-8385-7701-6.
- Неттер Ф. (2004). Атлас анатомії людини (переклад Цегельського А.А.). Львів: Наутілус. с. 592. ISBN 966-95745-8-7.
- Human Anatomy & Physiology (вид. 7th). Benjamin Cummings. 2006. ISBN 978-0805359091.
- Pletikos, Mihovil; Sousa, Andre MM (22 січня 2014). Temporal Specification and Bilaterality of Human Neocortical Topographic Gene Expression. Neuron 81 (2): 321–332. PMC 3931000. PMID 24373884. doi:10.1016/j.neuron.2013.11.018.
- Natasha Warren; Damira Caric; Thomas Pratt; Julia A. Clausen; Pundit Asavaritikrai; John O. Mason; Robert E. Hill; David J. Price та ін. (1999). The transcription factor, Pax6, is required for cell proliferation and differentiation in the developing cerebral cortex. National Institutes of Health. с. 627–635. PMID 10498281.
- Larsen, W J. Human Embryology 3rd edition 2001. pp 421—422 ISBN 0-443-06583-7
- Stephen C. Noctor; Alexander C. Flint; Tamily A. Weissman; Ryan S. Dammerman; Arnold R. Kriegstein (2001). Neurons derived from radial glial cells establish radial units in neocortex. Nature (journal) 409 (6821): 714–720. PMID 11217860. doi:10.1038/35055553.
- Rakic, P (October 2009). Evolution of the neocortex: a perspective from developmental biology.. Nature reviews. Neuroscience 10 (10): 724–35. PMC 2913577. PMID 19763105. doi:10.1038/nrn2719.
- Rakic, P (November 1972). Extrinsic cytological determinants of basket and stellate cell dendritic pattern in the cerebellar molecular layer.. The Journal of Comparative Neurology 146 (3): 335–54. PMID 4628749. doi:10.1002/cne.901460304.
- Calegari, F; Haubensack W; Haffner C; Huttner WB (2005). Selective lengthening of the cell cycle in the neurogenic subpopulation of neural progenitor cells during mouse brain development.. J Neurosci. 25 (28): 6533–8. PMID 16014714. doi:10.1523/jneurosci.0778-05.2005.
- P. Rakic (1988). Specification of cerebral cortical areas. Science (journal) 241 (4862): 170–176. PMID 3291116. doi:10.1126/science.3291116. Текст «Science» проігноровано (довідка)
- Hu, X.L.; Wang,Y.; Shen, Q. (2012). Epigenetic control on cell fate choice in neural stem cells. Protein & Cell 3 (4): 278–290. PMC 4729703. PMID 22549586. doi:10.1007/s13238-012-2916-6.
- Kostović, Ivica. Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. Journal of Comparative Neurology 297 (3): 441–470. doi:10.1002/cne.902970309.
- Fukuchi-Shimogori, T; Grove, EA (2 листопада 2001). Neocortex patterning by the secreted signaling molecule FGF8.. Science 294 (5544): 1071–4. PMID 11567107. doi:10.1126/science.1064252.
- Garel, S; Huffman, KJ; Rubenstein, JL (May 2003). Molecular regionalization of the neocortex is disrupted in Fgf8 hypomorphic mutants.. Development (Cambridge, England) 130 (9): 1903–14. PMID 12642494. doi:10.1242/dev.00416.
- Shipp, Stewart (17 червня 2007). Structure and function of the cerebral cortex. Current Biology 17 (12): R443–9. PMID 17580069. doi:10.1016/j.cub.2007.03.044. Процитовано 17 лютого 2009.
- Meyer, Gundela; Goffinet, André M.; Fairén, Alfonso (1999). Feature Article: What is a Cajal–Retzius cell? A Reassessment of a Classical Cell Type Based on Recent Observations in the Developing Neocortex. Cereb. Cortex 9 (8): 765–775. PMID 10600995. doi:10.1093/cercor/9.8.765.
- Judaš, Miloš; Pletikos, Mihovil (2010). The discovery of the subpial granular layer in the human cerebral cortex. Translational Neuroscience 1 (3): 255–260. doi:10.2478/v10134-010-0037-4.
- Gilbert CD, Sigman M (2007). Brain states: top-down influences in sensory processing. Neuron 54 (5): 677–96. PMID 17553419. doi:10.1016/j.neuron.2007.05.019.
- Cauller L (1995). Layer I of primary sensory neocortex: where top-down converges upon bottom-up. Behav Brain Res 71 (1–2): 163–70. PMID 8747184. doi:10.1016/0166-4328(95)00032-1.
- Rubio-Garrido P, Pérez-de-Manzo F, Porrero C, Galazo MJ, Clascá F (2009). Thalamic input to distal apical dendrites in neocortical layer 1 is massive and highly convergent. Cereb Cortex 19 (10): 2380–95. PMID 19188274. doi:10.1093/cercor/bhn259.
- Jones EG (1998). Viewpoint: the core and matrix of thalamic organization. Neuroscience 85 (2): 331–45. PMID 9622234. doi:10.1016/S0306-4522(97)00581-2.
- Creutzfeldt, O. 1995. Cortex Cerebri. Springer-Verlag.
- Lam YW, Sherman SM (2010). Functional Organization of the Somatosensory Cortical Layer 6 Feedback to the Thalamus. Cereb Cortex 20 (1): 13–24. PMC 2792186. PMID 19447861. doi:10.1093/cercor/bhp077.
- Mountcastle V (1997). The columnar organization of the neocortex. Brain 120 (4): 701–722. PMID 9153131. doi:10.1093/brain/120.4.701.
- HUBEL DH, WIESEL TN (October 1959). Receptive fields of single neurones in the cat's striate cortex. J. Physiol. (Lond.) 148 (3): 574–91. PMC 1363130. PMID 14403679. doi:10.1113/jphysiol.1959.sp006308.
- S.M. Dombrowski, C.C. Hilgetag, and H. Barbas. Quantitative Architecture Distinguishes Prefrontal Cortical Systems in the Rhesus Monkey.Cereb. Cortex 11: 975—988. «…they either lack (agranular) or have only a rudimentary granular layer IV (dysgranular).»
- Sun W, Dan Y (2009). Layer-specific network oscillation and spatiotemporal receptive field in the visual cortex. Proc Natl Acad Sci U S A 106 (42): 17986–17991. PMC 2764922. PMID 19805197. doi:10.1073/pnas.0903962106.
- Brodmann K (1909). Vergleichende Lokalisationslehre der Grosshirnrinde (нім.). Leipzig: Johann Ambrosius Barth.
- Principles of Anatomy and Physiology 12th Edition — Tortora, Page 519-fig. (14.15)
- Nieuwenhuys R, Donkelaar HJ, Nicholson C (1998). The central nervous system of vertebrates, Volume 1. Springer. с. 2011–2012. ISBN 978-3-540-56013-5.
- Frithjof Kruggel; Martina K. Brückner; Thomas Arendt; Christopher J. Wiggins; D. Yves von Cramon (2003). Analyzing the neocortical fine-structure. Medical Image Analysis 7 (3): 251–264. doi:10.1016/S1361-8415(03)00006-9.
- Katherine L. Narr; Roger P. Woods; Paul M. Thompson; Philip Szeszko; Delbert Robinson; Teodora Dimtcheva; Mala Gurbani; Arthur W. Toga та ін. (2007). Relationships between IQ and Regional Cortical Grey Matter Thickness in Healthy Adults. Cerebral Cortex 17 (9): 2163–2171. PMID 17118969. doi:10.1093/cercor/bhl125.
- Alexandre F.M. DaSilva; Cristina Granziera; Josh Snyder; Nouchine Hadjikhani (2007). Thickening in the somatosensory cortex of patients with migraine. Neurology 69 (21): 1990–1995. PMID 18025393. doi:10.1212/01.wnl.0000291618.32247.2d.
- Catharine Paddock (20 листопада 2007). Migraine Sufferers Have Thicker Brain Cortex. Medical News Today.
- Datte R, Detre JA (Oct 2011). Absence of changes in cortical thickness in patients with migraine. Cephalagia 31 (14): 1452–8. PMC 3512201. PMID 21911412. doi:10.1177/0333102411421025.
- Habib M (2000). The neurological basis of developmental dyslexia: an overview and working hypothesis. Brain 123 (12): 2373–99. PMID 11099442. doi:10.1093/brain/123.12.2373.
- Carlson, N. R. (2013). Physiology of Behavior. Upper Saddle River, NJ: Pearson Education Inc.
- Cusack, R. (2005). The intraparietal sulcus and perceptual organization. Journal of Cognitive Neuroscience, 17(4), 641—651. doi: 10.1162/0898929053467541
- Ono, Kubick, Abernathey, Atlas of the Cerebral Sulci, Thieme Medical Publishers, 1990. ISBN 0-86577-362-9. ISBN 3-13-732101-8.
- Toro, Roberto; Perron, Michel; Pike, Bruce; Richer, Louis; Veillette, Suzanne; Pausova, Zdenka; Paus, Tomáš (1 жовтня 2008). Brain Size and Folding of the Human Cerebral Cortex. Cerebral Cortex (англ.) 18 (10): 2352–2357. ISSN 1047-3211. PMID 18267953. doi:10.1093/cercor/bhm261.
- Неттер Ф. (2004). Атлас анатомії людини (переклад Цегельского А.А.). Львів: Наутілус. с. 592. ISBN 966-95745-8-7.