Закон Ома

Зако́н О́ма — це твердження про пропорційність сили струму в провіднику прикладеній напрузі, справедливе для металів і напівпровідників при не надто великих прикладених напругах. Якщо для елемента електричного кола справедливий закон Ома, то цей елемент має лінійну вольт-амперну характеристику.

Класична електродинаміка
Електрика · Магнетизм

Фізична природа закону

Закон Ома справедливий для провідників, виготовлених із матеріалів, у яких є вільні носії заряду: електрони провідності, дірки або іони. Якщо до таких провідників прикласти напругу, то в провідниках виникає електричне поле, що змушуватиме носії заряду рухатися. Під час цього руху носії заряду розганяються і збільшують свою кінетичну енергію. Проте зростання енергії носіїв заряду обмежене зіткненнями між собою, зі зміщеними з положень рівноваги, внаслідок теплового руху, атомами матеріалу. Під час таких зіткнень, надлишкова кінетична енергія носіїв струму передається коливанням кристалічної ґратки, та виділяється у вигляді тепла.

В середньому, носії заряду мають швидкість, яка визначається частотою зіткнень. Математичною характеристикою таких зіткнень є час розсіяння і зв'язана із ним довжина вільного пробігу носіїв заряду. Обчислення показують, що середня швидкість носіїв заряду пропорційна прикладеному електричному полю, а отже й напрузі.

Таким чином, у матеріалах із вільними носіями заряду сила струму пропорційна напруженості електричного поля. Проходження струму крізь матеріал супроводжується виділеннями тепла. Докладніше про це — у статті закон Джоуля — Ленца.

У сильних електричних полях закон Ома часто не справджується навіть для гарних провідників, оскільки фізична картина розсіювання носіїв заряду змінюється. Розігнаний до великої швидкості носій заряду може іонізувати нейтральний атом, породжуючи нові носії заряду, які теж у свою чергу роблять внесок в електричний струм. Електричний струм різко, іноді лавиноподібно, зростає.

У деяких матеріалах за низьких температур процеси розсіювання носіїв заряду гасяться завдяки особливій взаємодії між ними та коливаннями кристалічної ґратки фононами. В такому разі виникає явище надпровідності.

Математичне формулювання

В електротехніці прийнято записувати закон Ома в інтегральному вигляді

де U — прикладена напруга, I — сила струму, R електричний опір провідника.

При аналізі електричних схем три еквівалентні вирази закону Ома використовуються як взаємозамінні:

або або


Проте опір є характеристикою провідника, а не матеріалу, й залежить від довжини та поперечного перерізу провідника. Тому в фізиці застосовують закон Ома у диференціальному вигляді:

де j густина струму, σ питома провідність матеріалу, E напруженість електричного поля.

Питома провідність залежить від кількості вільних носіїв заряду в провіднику і від їхньої рухливості.

Еквівалентність двох форм запису

Різниця потенціалів (напруга) на кінцях провідника довжиною з постійною напруженістю електричного поля дорівнює

Якщо провідник має площу перерізу S, то сила струму в ньому зв'язана з густиною сили струму формулою:

.

Виходячи із закону Ома в формі

і, підставляючи значення та , отримуємо рівняння

,

або

,

де опір визначається через питому провідність формулою

.

Тут  — питомий опір.

Змінний струм

У випадку змінного струму закон Ома можна розширити, включивши в розгляд також елементи електричного кола, які характеризуються ємністю й індуктивністю. Змінний струм проходить крізь конденсатор, та випереджає за фазою напругу. В індуктивності змінний струм відстає за фазою від напруги. Проте в обох випадках амплітуда змінного струму пропорційна амплітуді прикладеної змінної напруги. Математично це можна описати, ввівши комплексні опори (імпеданси).

Тоді можна записати

де U — амплітуда змінної напруги, I — амплітуда змінного струму, Z — імпеданс.

Закон Ома для повного кола

В повному колі окрім опору навантаження є ще джерело живлення, яке має власний внутрішній опір. Сила струму в ньому визначається формулою

де  електрорушійна сила,  — опір навантаження,  — внутрішній опір джерела струму.

Історія відкриття

Георг Ом проводив дослідження протікання струму в електричному колі на початку XIX століття. На шляху до встановлення закономірності йому довелося подолати чимало перешкод. Для проведення досліджень і встановлення закономірності необхідно було мати вимірювальні прилади, джерела струму із стандартними властивостями, що не змінювалися б з часом, стандартні провідники. Усе це довелося створити або вдосконалити.

Діаграма, що допомагає запам'ятати закон Ома. Потрібно закрити шукану величину, і два інших символи дадуть формулу для її обчислення

Було добре відомо, що магнітна дія струму змінюється при зміні елементів замкнутого кола: джерела електричного струму та провідників, які з'єднують полюси джерела. Чи існує закономірність, яка пов'язує магнітну дію струму з величинами, які характеризують елементи замкнутого кола? Мабуть, таке питання виникало у багатьох дослідників.

Легко уявити обставини, в яких почалися пошуки інтуїтивно відчуваної закономірності. Поняття напруги, спаду напруги, електрорушійної сили ще не були сформульовані. Точаться суперечки щодо механізму дії гальванічних елементів, незрозуміле взаємовідношення електростатичних сил та сил, які виникають при протіканні струму; нарешті невідомо що таке рухома електрика та електрика в спокої. Ом, наприклад, називає у своїх перших працях електричний струм «контактною електрикою».

Ом керувався наступною ідеєю. Якщо над провідником, яким проходить струм, підвісити на пружній нитці магнітну стрілку, то кут повороту стрілки дасть інформацію про струм, точніше про його зміни при варіаціях елементів замкнутого кола. Ом повернувся до ідеї Кулона й сконструював крутильні терези. Магнітна стрілка виявилась точним і чуттєвим гальванометром.

В перших дослідах, результати яких Ом опублікував у 1825 році, спостерігалась «втрата сили» (зменшення кута відхилення стрілки) із збільшенням довжини провідника, підключеного до полюсів вольтового стовпа (поперечний переріз провідника був постійним). Оскільки не було одиниць вимірювання, довелося вибрати еталон — «стандартний дріт». Як залежна змінна фігурувало зменшення сили, що діяла на магнітну стрілку. Досліди виявили закономірне зменшення цієї сили при збільшенні довжини провідника. Функція отримала аналітичний вираз, але Ом не претендував на встановлення закономірності тому, що гальванічний елемент не давав постійної електрорушійної сили (е.р.с.).

Ом ще не розумів значення внутрішнього опору джерела струму. Вольтів стовп, з яким він експериментував, мав внутрішній опір, який значно перевищував зовнішній. Щоб отримати показники, достатні для оцінки відхилення магнітної стрілки «гальванометра», звичайно ж доводилося зводити до мінімуму опір зовнішньої частини кола, який визначався, по суті, коротким відрізком металевого провідника. Зрозуміло, що в такій ситуації точність встановлення залежності сили струму від опору металевих провідників була недостатньою. До того ж внутрішній опір вольтового стовпа був далеко не постійним.

Звичайно ж потрібно дивуватися тому, що закономірність для описаної ситуації була отримана вірно, хоча б у першому наближенні. Проте до встановлення закону було ще далеко.

Успіх наступних експериментів Ома вирішило відкриття термоелектрики. Німецький фізик Томас Йоганн Зеєбек брав участь у великій дискусії між прихильниками хімічної та контактної теорії. Він дотримувався думки Вольта, що е.р.с. виникає при контакті речовини незалежно від наявності хімічного реагенту, та шукав доказів. У 1822 році Зеебек виготовив спіраль з мідної смужки, всередині якої закріпив компас. Це був по-сучасному гальванометр з невеликим внутрішнім опором. Кінці спіралі приєднувались до різних металевих пластинок. Коли було взято бісмутовий диск і покладено на мідний, магнітна стрілка здригнулася. Ефекту не було, якщо диск брали не рукою, а за допомогою предмета, який мав кімнатну температуру.

Врешті-решт Зеебек з'ясував, що ефект пропорційний різниці температур двох контактів.

Одним з найважливіших чинників відкриття було те, що в руках експериментаторів з'явилося джерело, е.р.с. якого можна було плавно регулювати і підтримувати постійною.

Ом використав термопару бісмут-мідь, один спай поміщався в лід, інший — у окріп. Чутливість гальванометра довелося звичайно ж збільшити. Процес вимірів являв собою наступне: вісім експериментальних провідників почергово вмикалися в коло. В кожному випадку фіксувалося відхилення магнітної стрілки. Результат досліду Ом виразив такою формулою:

, де
  • Х — сила магнітної дії провідника,
  • а — стала, яка визначала е.р.с. термопари,
  • х — довжина провідника.
  • b — константа, яка визначала провідність всього кола.

Це був другий крок. Тут ще немає звичних нам понять сили струму, е.р.с., зовнішнього, внутрішнього опору. Вони відграняться поступово.

В наступній праці (1826 рік) Ом вводить поняття «електроскопічної сили», користується поняттям сили струму та записує закон для ділянки кола вже у формі, дуже близькій до сучасної:

, де
  • Х — сила струму,
  • k — провідність,
  • w — поперечний переріз провідника,
  • а — електроскопічна сила,
  • l — довжина провідника.

Незважаючи на переконливі дані експериментів та чіткі теоретичні основи, закон Ома протягом майже десяти років лишався маловідомим. Достатньо сказати, що Фарадей також не підозрював про існування закону; при описанні дослідів він був змушений вдаватися до перерахунку даних про елементи кола: кількість пластин в батареях, їхні розміри, склад електроліту, довжина, діаметр та матеріал дроту.

Омові довгий час безуспішно доводилося доводити місцевим вченим, що ним відкрито важливу істину. Ввести закон в фізику виявилося набагато складніше, ніж відкрити. І це закономірно. Фізичне мислення на той час було ще не готовим до сприйняття загальної закономірності (тим більше з рук провінційного вчителя).

Перевірка закону Ома тривала впродовж майже всього XIX століття. В 1876 році спеціальний комітет Британської асоціації провів точну перевірку, вказану Максвеллом. Справедливість закону Ома для рідких провідників було підтверджено Коном, Фітцтжеральдом та Троутоном.

Див. також

Джерела

  • І.М. Кучерук, І.Т. Горбачук, П.П. Луцик (2006). Загальний курс фізики: Навчальний посібник у 3-х т. Т.2. Електрика і магнетизм. Київ: Техніка.
  • С.Е. Фріш і А.В. Тіморєва (1953). Курс загальної фізики. Том II. Електричні і електромагнітні явища. Київ: Радянська школа.
  • Сивухин Д.В. (1977). Общий курс физики. т III. Электричество. Москва: Наука.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.