Чотиривимірні гіперкомплексні числа
Чотиривимірні гіперкомплексі числа — гіперкомплексні числа з трьома уявними одиницями.
Тобто числа виду
де
- — дійсні числа;
- — уявні одиниці,
- — уявна частина.
Множення
Всі 3*3 взаємних добутків уявних одиниць є деякими чотиривимірними гіперкомплексними числами, наприклад:
Погрупувавши доданки
Після заміни змінних, отримаємо:
Тому довільне чотиривимірне гіперкомплексне число можна записати рекурсивно:
- .
Додавання і множення гіперкомплексних чисел повинно бути узгодженим з традиційним додаванням і множенням дійсних чисел.
Дійсні числа в даній гіперкомплексній системі мають вигляд
- — додавання,
- — множення (може бути не комутативним і не асоціативним).
Степенева асоціативність
Щоб була хоча б одна з найслабших форм асоціативності — степенева асоціативність:
достатньо комутативності множення або степеневої асоціативності для .
Другого легко досягти при:
Почергово зануляючи всі числа окрім одного отримаємо:
- — антикомутативність добутків
Альтернативність
Використавши ще одну із слабких форм асоціативності — альтернативність, отримаємо:
|
|
Отримаємо:
- кватерніони
- бікомплексні числа (комутативні кватерніони)
- спліт-кватерніони
- дуальні комплексні числа
Не альтернативні
При відсутності альтернативності, не можливо вивести одні добутки із інших, але легко побачити степенево-асоціативну систему:
Ділення
Визначимо операції:
- — норма числа,
- — ділення чисел.
При можна визначити:
- — спряжене число,
- .
Діагональний базис
Якщо присутня уявна одиниця то як і в подвійних числах існують два ортогональні ідемпотентні елементи:
які можна використати як альтернативний базис:
У даному базисі додавання, множення та ділення обчислюються покомпонентно. Ділення не визначене коли чи рівні нулю.
Див. також
Джерела
- Кантор И. Л., Солодовников А. С. Гиперкомплексные числа. — Москва : Наука, 1973. — 144 с.(рос.)