Локалізація кільця

В комутативній алгебрі локалізацією комутативного кільця R (з одиницею) по мультиплікативній системі називається простір формальних дробів з чисельниками з R і знаменниками з S з арифметичними операціями і ототожненнями, звичайними для дробів. Використовується також термін кільце часток. Позначається як S-1R .

Термін локалізація походить з алгебраїчної геометрії: якщо R  — це кільце функцій на алгебраїчному многовиді V, то для того, щоб вивчити локальні властивості цього многовида в точці p, зазвичай розглядають множину функцій, які не рівні нулю в цій точці і локалізують R по цій множині.

Звичайне позначення для локалізації (або кільця часток)  S-1R, проте в окремих випадках частіше вживають інші позначення. Так, якщо S  доповнення простого ідеалу I, локалізація R позначається як RI (і називається локалізацією кільця по простому ідеалу), а якщо S  — множина всіх степенів елемента f, використовується позначення Rf . Останні два випадки є фундаментальними для теорії схем.

Формальне визначення

За допомогою формальних дробів

Мультиплікативною системою в кільці R називається підмножина S в R, така що і множина S є замкнутою щодо множення в кільці R, тобто з того що випливає, що також .

Елементами локалізації кільця R по мультиплікативній системі S є формальні дроби виду r/s, де r  — довільний елемент R, а s  — елемент множини S. Два дроби і вважаються еквівалентними (є представниками одного і того ж елемента кільця часток), якщо для деякого елемента справедливо . Якщо R  цілісне кільце, тобто в ньому немає дільників нуля то очевидно для нього має виконуватися простіше правило еквівалентності: два дроби і є еквівалентними, якщо .

Операції додавання і множення визначаються як звичайно для дробів:

Перевіряється, що, якщо в сумі або добутку дроби замінити на еквівалентні, новий результат буде дробом, еквівалентним попередньому. З такими операціями множина набуває структури комутативного кільця з одиницею. Нулем в ньому є дріб 0/1, одиницею  — дріб 1/1. Елементи початкового кільця R можна ідентифікувати з елементами виду r/1 в кільці S -1 R. Відображення , що відображає елемент r в r/1 є гомоморфізмом кілець.

Через універсальну властивість

Нехай, як і вище R — комутативне кільце з одиницею і S деяка його мультиплікативна система.

Локалізація кільця R по мультиплікативній системі S має наступну властивість універсальності:

тобто образи елементів з S у кільці є оборотними елементами і окрім того для любих гомоморфізмів , для яких тобто образи елементів з S є оборотними, існує єдиний гомоморфізм для якого .

Дана властивість повністю визначає локалізацію R по S: Якщо деяке інше кільце задовольняє умову універсальності подану вище то воно є ізоморфним до

Властивості

  • Кожен оборотний елемент кільця S-1R має вигляд er/s, де r і s належать множині S, а e  — оборотний елемент кільця R.
  • Кожен ідеал кільця S-1R є породжений елементами з множини де I  — деякий ідеал кільця R.
  • Існує бієкція між множиною простих ідеалів кільця S-1R і множиною простих ідеалів R, що не перетинаються з множиною S.
  • Якщо, як вище, ідеали IS і JS кільця S -1R породжені елементами і де I і J  — ідеали кільця R, то ідеали IS + JS , ISJS породжені елементами з і відповідно. Також (радикал ідеалу) породжується елементами з
  • Як наслідок з попереднього, нульрадикал кільця S-1R породжується образами нульрадикала кільця R при канонічному відображенні.
  • Нехай I  — ідеал кільця R, і — природна проєкція на фактор-кільце. Для мультиплікативної системи S, що не перетинається з I позначимо через T образ цієї множини при цій проєкції. Тоді p породжує сюр'єктивний гомоморфізм і кільця і є ізоморфними.
  • Нехай  — мультиплікативні системи в кільці R і Тоді кільце часток є ізоморфним кільцю
  • Локалізація кілець Нетер, Артіна і Дедекінда теж є кільцями відпвідно Нетер, Артіна і Дедекінда.

Локалізація по простому ідеалу

Важливий окремий випадок локалізації  — локалізація кільця по простому ідеалу I, коли мультиплікативна система є доповненням цього ідеалу в кільці. В цьому випадку локалізація позначається як RI. Для локалізації кільця по простому ідеалу справедливі такі властивості:

  • Локалізація RI по простому кільці є локальним кільцем. Його єдиний максимальний ідеал породжується образами ідеала I.
  • Існує бієкція між простими ідеалами в RI і простими ідеалами в R, що містяться у I.
  • Якщо S  — мультиплікативна система, що не перетинається з I, то RI є ізоморфним
  • Зокрема поле часток кільця R є ізоморфним полю часток кільця RI.

Приклади

  • Якщо R  цілісне кільце, множина всіх його ненульових елементів утворює мультиплікативну систему. Кільце часток за цією системою є полем і називається полем часток, зазвичай позначається Quot (R). Всі елементи поля часток мають вигляд a/ b, де a, b  — елементи R і b ≠ 0, зі звичайними арифметичними правилами скорочення чисельника і знаменника, додавання і множення. Легко бачити, що поле часток  — найменше поле, в яке можна вкласти R. Наприклад, поле часток поля є ізоморфним самому полю.
  • Полем часток кільця цілих чисел є поле раціональних чисел .
  • Степені числа 10 в утворюють мультиплікативну систему. Кільцем часток по ній буде кільце скінченних десяткових дробів.
  • Полем часток кільця многочленів над полем k буде поле раціональних функцій .
  • Парні числа в утворюють простий ідеал. Локалізацією кільця по ньому буде кільце раціональних дробів, у яких в нескоротному вигляді знаменник  непарне число.
  • Розглянемо кільце многочленів k[x] і f = x. Тоді Rf  — кільце многочленів Лорана k[x, x-1].
  • Якщо R  евклідове кільце, то всяке кільце, проміжне між R і його полем часток, є локалізацією кільця R за деякою мультиплікативною системою S.
  • Якщо система S складається з одних тільки оборотних елементів кільця R, канонічний гомоморфізм кільця R в S -1 R перетворюється в ізоморфізм, тобто S -1 R в цьому випадку є ізоморфним кільцю R.

Модулі часток

Приблизно таку ж конструкцію можна застосувати і до модулів і для довільного R-модуля M розглянути локалізацію модуля S -1 M .

Локалізація модуля S-1M  — це множина формальних дробів виду m/s із відношенням еквівалентності , якщо , для деякого елемента , зі звичайною операцією додавання дробів, а також з операцією множення на елементи кільця S -1R виду m/s * a/s'= am / ss' .

Еквівалентно, як і для випадку кілець локалізацію модуля можна визначити за допомогою універсальної властивості аналогічної випадку кілець.

Нехай  — гомоморфізм R-модулів. Він індукує гомоморфізм S-1R-модулів , що відображає m/s в u(m)/s . Очевидно, що , тобто операція S-1 є функтором. Більш того, цей функтор є точним. Тобто, якщо послідовність є точною, то і індукована послідовність є точною.

З цього випливає, що якщо є підмодулем , то і є підмодулем . Якщо ж ми розглянемо два підмодуля даного модуля, то застосування до них S -1 комутує із операцією суми модулів, перетину модулів і операцією переходу до фактор-модуля. Також локалізація тензорного добутку двох R-модулів ізоморфна тензорному добутку їх локалізацій.

Локалізацію модуля також можна записати за допомогою тензорного добутку:

З цього запису і з точності функтора локалізації випливає, що модуль є плоским.

R-модуль M є нульовим тоді і тільки тоді коли для довільного простого ідеала I локалізація M по I є нульовим модулем. Те саме твердження справедливе, якщо замість простих ідеалів розглядати лише максимальні.

Локальні властивості

Властивість P кільця А (або А - модуля M) називається локальною якщо такі твердження еквівалентні:

  • R (відповідно M) має властивість P,
  • RI (відповідно MI ) має властивість P для всіх простих ідеалів I кільця А.

Можна навести такі приклади локальних властивостей: властивість модуля бути рівним нулю, властивість гомоморфізму бути ін'єктивним або сюр'єктивним (потрібно розглядати гомоморфізми, індуковані локалізацією), властивість модуля бути плоским.

Див. також

Джерела

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.