Вільна абелева група
Вільна абелева група — абелева група, кожен елемент якої може бути однозначно представлений у вигляді лінійної комбінації елементів деякої множини з цілочисловими коефіцієнтами. Як і у випадку з векторними просторами, дану множину називають базисом.
Група (математика) |
---|
Теорія груп |
Класифікація простих скінченних груп Скінченна циклічна група Cp Теорема Лагранжа |
Вільні абелеві групи не є вільними групами, за винятком циклічної групи і тривіальної групи, що складається з одного елемента.
Властивості
- Будь-які два базиси вільних абелевих груп є рівнопотужними. Потужність базису вільної абелевої групи називається рангом абелевої групи.
- Для довільного кардинального числа існує вільна абелева група рангу .
- Нехай — вільна абелева група і — абелева група. Якщо існує епіморфізм , то існує підгрупа групи ізоморфна групі така, що .
- Будь-яка абелева група гомоморфним образом вільної абелевої групи. Крім того, якщо група має множину генераторів потужності то вона є гомоморфним образом вільної абелевої групи рангу . Як наслідок будь-яка абелева група ізоморфна факторгрупі вільної абелевої групи.
- Підгрупа вільної абелевої групи теж є вільною абелевою групою. У випадку скінченнопородженої вільної абелевої групи (ранг якої є деяким натуральним числом) можна дати повнішу характеристику підгруп. Нехай — вільна абелева група зі скінченним рангом n. Тоді підгрупа цієї групи є вільною абелевою групою рангу і можна вибрати такий базис групи і натуральні числа що
- Множина є базисом підгрупи
- ділиться на для всіх
Приклади
- Група цілих чисел з додаванням. Базисом цієї групи може бути одна з множин .
- Адитивна група кільця многочленів з цілими коефіцієнтами. Базисом цієї групи є, наприклад множина .
Література
- Курош А. Г. Теория групп. — 3-е изд. — Москва : Наука, 1967. — 648 с. — ISBN 5-8114-0616-9.(рос.)
- Phillip A. Griffith (1970). Infinite Abelian group theory. Chicago Lectures in Mathematics. University of Chicago Press. ISBN 0-226-30870-7.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.