Підгрупа

Підгрупою групи G називається підмножина групи , що сама є групою щодо операції, визначеної в .

Група (математика)
Теорія груп

Підмножина групи є її підгрупою тоді і тільки тоді, коли вона задовольняє такі умови:

  1. містить добуток будь-яких двох елементів з ,
  2. містить разом зі всяким своїм елементом обернений до нього елемент .

У разі скінченних і періодичних груп перевірка умови 2 є зайвою.

Еквівалентно є підгрупою, якщо виконується умова:


Приклади

  • Підмножина групи , що складається з одного елементу , буде, очевидно, підгрупою, і ця підгрупа називається одиничною підгрупою групи .
  • Сама також є своєю підгрупою.
  • Нехай G абелева група елементами якої є

і груповою операцією є додавання за модулем 8. Її таблиця Келі має вигляд:

+ 0 2 4 6 1 3 5 7
0 0 2 4 6 1 3 5 7
2 2 4 6 0 3 5 7 1
4 4 6 0 2 5 7 1 3
6 6 0 2 4 7 1 3 5
1 1 3 5 7 2 4 6 0
3 3 5 7 1 4 6 0 2
5 5 7 1 3 6 0 2 4
7 7 1 3 5 0 2 4 6

Ця група має дві власні підгрупи: J={0,4} і H={0,2,4,6}, де J є також підгрупою H. Таблиця Келі H є верхньою лівою чвертю таблиці Келі групи G. Група G є циклічною, як і її підгрупи.

Пов'язані визначення

  • Сама група і одинична підгрупа називається невласними підгрупами групи G, всі інші підгрупи H власними.
  • Перетин всіх підгруп групи , що містять всі елементи деякої непорожньої множини , називається підгрупою, породженою множиною , і позначається .
  • Якщо складається з одного елемента , то називається циклічною підгрупою елемента .
  • Якщо група ізоморфна деякій підгрупі групи , то кажуть, що група може бути вкладена в групу .

Властивості

  • Теоретико-множинний перетин будь-яких двох підгруп групи є підгрупою групи .
  • Теоретико-множинне об'єднання підгруп, взагалі кажучи, не зобов'язане бути підгрупою. Об'єднанням підгруп і називається підгрупа, породжена об'єднанням множин .
  • Нехай гомоморфізм груп. Тоді якщо є підгрупою , то є підгрупою . Якщо є підгрупою , то є підгрупою .
  • Якщо дані дві групи і кожна з них ізоморфна деякій власній підгрупі іншої, то звідси ще не слідує ізоморфізм самих цих груп.

Див. також

Джерела

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.