Реакції відновлення в біологічних системах

Відновлення — це процес, що супроводжується утворенням нових зв'язків з Гідрогеном і включає в себе перенесення електронів до органічного субстрату. Відновлення є протилежним процесу окиснення, тобто процесу видалення Гідрогену з утворенням кратного зв'язку або нового зв'язку між атомом Карбону і гетероатомом, більш електронегативним, ніж Гідроген, наприклад, Оксигену, Нітрогену, Сульфуру.

В окисно-відновних процесах змінюється ступінь окиснення атому Карбону.

Реакції відновлення в біоорганічній хімії

В біоорганічній хімії велике значення мають реакції відновлення, які є складовою частиною різних біохімічних процесів в біологічних системах, а в промисловості використовуються для синтезу цінних біоорганічних сполук.

Для відновлення органічних сполук можуть бути використані майже всі відновники. Частіше за все використовують водень2) в присутності гетерогенних каталізаторів, гідриди металів та активні метали (Na або Zn). В біологічних системах роль донора водню грають різноманітні коферменти, наприклад НАДН, НАДФН та ФАДН2.

Найбільш загальним способом відновлення ненасичених вуглець-вуглецевих зв'язків є каталітичне гідрування.

В біологічних системах часто протікають реакції відновлення різних азотовмісних сполук, наприклад нітрилів і амідів карбонових кислот, в результаті яких утворюються первині аміни:

R-C~N + H2 → R-CH2-NH2
R-C(=O)-NH2 + H2 → R-CH2-NH2

Примітка: C~N — потрійний звязок в молекулі нітрилу.

В деяких яскраво забарвлених харчових продуктах можуть бути барвники на основі аніліну. Постійне вживання в їжу таких продуктів може призвести до серйозних наслідків, оскільки анілін — яскраво виражений відновник має високу біохімічну активність; окислюючись він утворює в організмі людини різні токсичні сполуки. Промислове добування аніліну з нітробензолу є типовою реакцією відновлення (більш відома як реакція Зініна):

C6H5-NO2 + H2,Ni → C6H5-NH2 (відновлення нітробензолу до аніліну)

Одним з учасників ферментативних процесів відновлення є похідне 1,4-дигідропиридина НАДН, що в при відновленні утворює НАД+ в різних окисно-відновних реакціях у складі таких складних циклів як цикл Кребса, Кальвіна та ін. Наприклад, при участі НАДН протікає in vivo реакція перетворення альдегідів у спирти:

НАДН + Н+ + R-C(=O)-H → R-CH2-OH + НАД+

Взагалі відновлення карбонільних сполук (альдегідів, кетонів, складних естерів) призводить до утворення відповідних спиртів:

R-C(=O)-H + [H] → R-CH2-OH
R-C(=O)-R^ + [H] → R-CH(OH)-R^
R-C(=O)-O-R^ + [H] → R-CH2-OH + R^OH

Чільне місце в біоорганічній хімії посідає відновленн] моносахаридів (альдоз, кетоз). При відновленні альдоз отримується лиш один поліол, кетоз — суміш двох поліолів. Наприклад, при відновленні D-фруктози борогідридом натрію (NaBH4) утворюються D-глюцит (сорбітол) і D-маніт.

Важливою є реакція відновлювального амінування, яка протікає в організмі в процесі біосинтезу α-амінокислот. Процес відбувається за схемою приєднання—відщеплення і полягає в отриманні α-амінокислот з альдегідів та кетонів, з утворенням проміжного продукту іміну, який потім відновлюється до аміну:

R(H)=O + NH3 - H2O → R-C(H)=NH + H2 → R-CH2-NH2
R=O(R^) + NH3 - H2O → R-C(R^)=NH + H2 → R-C(R^)H-NH2

Друга стадія цього процесу в промислових умовах потребує каталізатору Ni, в живих організмах ця реакція потребує коферменту НАД·H2 та НАДФ·H:

R-C(R^)=NH + НАД·H2 → R-C(R^)H-NH2 + НАД+

Окислювально-відновні коферменти

Всі оксидоредуктази потребують коферментів. Вони можуть діяти в розчинній формі (Р) або у вигляді простетичної групи (П). Окислювально-відновні реакції, поряд з переносом електронів, часто включають перенесення одного або двох протонів. Тому зазвичай прийнято говорити про перенесення відновлювальних еквівалентів. Стандартний потенціал Е'0 простетичної групи може значно відрізнятися в залежності від оточення в молекулі ферменту.

Піридиннуклеотиди НАД+ (NAD+) і НАДФ+ (NADP+) широко поширені як коферменти дегідрогеназ. Вони переносять гідрид—іон (2е- і 1 H+ і діють завжди в розчинній формі. НАД+ передає відновлювальний еквівалент з катаболического шляху в дихальному ланцюзі і тим самим бере участь в енергетичному обміні. HАДФ+, навпаки, є найважливішим відновником при біосинтезі.

Нікотинамідаденіндинуклеотид (НАДН, NADН) — кофермент, присутній у всіх живих клітинах, входить до складу ферментів групи дегідрогеназ, які каталізують окислювально-відновні реакції; виконує функцію переносника електронів і водню, які приймає від окислюваних речовин. Відновлена форма (NADH) здатна переносити їх на інші речовини. Відмінність його від іншого найважливішого кофермент]]у нікотинамідаденіндинуклеотидфосфата, або NADP, в тому, що останній містить в молекулі ще один залишок фосфорної кислоти, пов'язаної з 21-вуглецевим атомом рибози.

НАДФ·H— -оксидаза, або NADPH-оксидаза (NOX), Никотинамідаденіндинуклеотидфосфат — клітинний мембрано-зв'язаний мультимолекулярний ферментний комплекс, що локалізується на плазматичній мембрані і в деяких органелах . Особливо збагачені цим ферментом фагоцитарні клітини, такі як макрофаги. Ці оксидази беруть участь у клітинній протимікробній захисній системі, а також у клітинної проліферації, диференціювання і регуляції експресії генів. Існує ціла група NADPH — оксидаз, які розрізняються по складу субодиниць, клітинної специфічності, регуляції та іншими[параметрами.

Флавінові коферменти ФМН і ФАД знайдені в дегідрогеназі, оксидазі і монооксигеназі . Зазвичай обидва з'єднання ковалентно пов'язані з ферментами. Активною групою обох коферментів є флавін (ізоалоксазина), що має сполучену систему з трьох кілець, яка може при відновленні приймати два електрони і два протона. У ФМН до флавіну приєднаний фосфорильований поліол рібіт . ФАД складається з ФМН , пов'язаного з АМФ. Обидва сполуки є функціонально близькими коферментами.

У ліпоєвої кислоті функцію окислювально—відновного центру виконує внутрішньомолекулярний дисульфідний місток. Активна ліпоєва кислота ковалентно пов'язана із залишком лізину (R ') молекули ферменту. Ліпоєва кислота насамперед бере участь в окислювальному декарбоксилюванні 2-кетокислот. Дисульфідний місток також міститься в пептидному коферменті глутатіоні

Функція убіхінону (коферменту Q4) як переносника відновного еквівалента в дихальному ланцюзі має велике значення для живих організмів. При відновленні хінон перетворюється на ароматичний гідрохінон (убіхінол). Подібні системи хінон/гідрохінон беруть участь в реакціях фотосинтезу. До цього класу окислювально -відновних систем належать також вітаміни Е і К.

Група гема є окислювально-відновним кофактором в дихального ланцюга, фотосинтезу, а також може бути у складі монооксигенази і пероксидази. На відміну від гемоглобіну в цих випадках іон заліза змінює валентність.

Редокс-потенціал як основна характеристика окисно—відновних реакцій в біологічних системах

Здатність відновника віддавати електрони окисника виражається величиною окисно-відновного потенціалу (стандартного відновного потенціалу), або редокс-потенціалу. Як стандарт в усьому світі прийнятий редокс—потенціал реакції

Н2 → 2Н+ + 2е-

який при тиску газоподібного водню в 1 атмосферу при концентрації іонів Н+ рівній 1 моль/літр (що відповідає рН = 0) і при 25 °C умовно прийнятий за нуль. В умовах значення рН , прийнятого як стандарт при біохімічних розрахунках, тобто при рН 7,0, редокс-потенціал (Е'0) водневого електрода (системи Н2 — 2Н+) дорівнює -0,42 В.

Значення редокс-потенціалу (Е'0) для деяких окислювально-відновних пар, що грають важливу роль при переносі електронів в біологічних системах:

Відновник Окисник Е'0, В
Н2 + -0,42
НАД·Н + Н+ НАД+ —0,32
НАДФ·Н + Н+ НАДФ+ -0,32
Флавопротеїн (відновл.) Флавопротеїн (окисл.) -0,12
Кофермент Q·Н2 Кофермент Q +0,04
Цитохром в (Fe2+) Цитохром в (Fe3+) +0,07
Цитохром C1 (Fe2+) Цитохром C1 (Fe3+) +0,23
Цитохром а (Fe2+) Цитохром а (Fe3+) +0,29
Цитохром а3 (Fe2+) Цитохром а3 (Fe3+) +0,55
Н2О ½О2 +0,82

Система з більш негативним редокс-потенціалом має більшу здатність віддавати електрони системі з більш позитивним редокс-потенціалом. Наприклад, пара НАД·Н/НАД+, редокс-потенціал якої дорівнює -0,32 В віддаватиме свої електрони окислювально-відновної парі флавопротеїн (відн.)/флавопротеїн (окисн.), що має потенціал −0,12 В, тобто більш позитивний. Велика позитивна величина редокс-потенціалу окисно — відновної пари вода/[кисень (+0,82 В) вказує на те, що у цієї пари здатність віддавати електрони (тобто здатність утворювати молекулярний кисень) виражена дуже слабо.

Реакції відновлення у фотосинтезі

Реакції відновлення беруть участь в окисно-відновних циклах в процесі фотосинтезу. Фотоси́нтез — процес синтезу органічних сполук з вуглекислого газу та води з використанням енергії світла й за участю фотосинтетичних пігментів. Загальне рівняння фотосинтезу виглядає так:

6СО2 + 12Н2О + 18АТФ + 12НАДФ·Н → С6Н12О6 + 18АДФ + 18Н3РО4+ + 12НАДФ

Темнова фаза фотосинтезу (більш відома як цикл Кальвіна) є складним циклом перетворення. Вона складається з трьох стадій:

Однією з найважливіших реакцій цього циклу є реакція відновлення дифосфогліцеринової кислоти під дією ферменту тризофосфатдегідрогенази за рахунок НАДФ·Н з утворенням 3-фосфогліцеринового альдегіду:

H2O3-O-C(H2)-(H)C(OH)-C=O-O-{P} + C21H29N7O17P3 • Н → H2O3-O-C(H2)-(H)C(OH)-C(H)=O + C21H29N7O17P3

Під дією гліцеральдегід-1,3-фосфатдегідрогенази дифосфогліцеринова кислота відновлюється НАД(Ф)·H (у рослин і ціанобактері; у пурпурних і зелених бактерій відновником є НАД·H) паралельно з відщепленням одного залишку фосфорної кислоти. Утворюється гліцеральдегід-3-фосфат (фосфогліцеральдегід, ФГА, тріозофосфат) Таким чином 3-фосфогліцериновий альдегід в результаті складних реакцій, які каталізуються ферментами іде на синтез фруктозо-6-фосфату (основний продукт фотосинтезу, попередник глюкози) та рібулозо-5-фосфату, який в свою чергу перетворюється на рибулозо-1,5-дифосфат, котрий приєднує СО2 і цикл повторюється.

Реакції відновлення у процесі гліколізу (під час спиртового бродіння)

Гліко́ліз — це цикл окисно — відновних реакцій який призводить до перетворення глюкози в піруват з утворенням АТФ та НАДН. Загальне рівняння гліколізу виглядає так:

С6Н12О6 + 2НАД+ + 2Н3РО4 + 2АДФ → 2ПВК + 2АТФ + 2НАД·Н + 2Н2О

Окремим випадком гліколізу, що протікає в біологічній системі дріжджів в анаеробних умовах є спиртове бродіння. Під час спиртового бродіння розщеплення глюкози починається гліколітичним шляхом (за винятком бактерії Zymomonas mobilis, у якої глюкоза метаболізує по шляху Ентнера-Дудорова[1]). У гліколітичних глюкоза розщеплюється і окиснюється до двох молекул пірувату, відбувається субстратне фосфорилювання двох молекул АДФ із утворенням АТФ, а також відновлюються до НАДH дві молекули НАД+. За аеробних умов НАДH знову окиснюється віддаючи електрони через ряд посередників на молекулярний кисень, і тоді знову може бути використаний у процесі гліколізу. В анаеробних умовах регенерація НАД+ відбувається у кінцевих етапах бродіння, під час яких акцептором електронів є сам піруват або його похідні: у випадку спиртового бродіння — ацетальдегід[2].

Ацетальдегід утворюється із пірувату шляхом декарбоксилювання (відщеплення вуглекислого газу), яке каталізується піруватдекарбоксилазою. Цей фермент потребує присутності іонів Mg2+ та містить ковалентно приєднаний кофермент тіамінпірофосфат[3].

Найважливішою реакцією в цьому циклі є відновлення ацетальдегіду до етилового спирту завдяки перенесенню гідрид-іона із НАДH, утвореного у гліколізі[4]. Реакція відбувається за участі ферменту алкогольдегідрогенази, що містить в активному центрі іон цинку, який поляризує карбонільну групу субстрату полегшуючи приєднання гідриду[3][5]:

С2Н4 + НАД·Н2 = С2Н5ОН + НАД+

Література

  1. Тюкавкіна Н. А. Бауков Ю. І. «Біоорганічна хімія» , Москва «Дрофа» 2004, 544с 2.
  2. Тюкавкіна Н. А., Артем'єва Н. Н. «Керівництво до лабораторних робіт з біоорганічної хімії», Москва, «Дрофа» 2008, 318с.
  3. Корольов А. П., Грідіна С. Б., Зінкевич Є. П. «Основи біохімії, частина 4: навчальний посібник Кемеровського технологічного інституту харчової промисловості» — Кемерово, 2004. — 92 с.
  4. Ю.Овчинніков «Біоорганічна хімія» — М.: «Просвещение», 1987. — 816 c.
  5. Сєвєрін. «Біохімія підручник для ВУЗів» — М., 2003. — 779 с.
  6. Маррі Р., Греннер Д. Биохимия человека — М.: «Мир», 1993. — 1-2 т.
  7. Комов В. П., Шведова В. Н. Біохимія / В. П. Комов — М.: Дрофа, 2004.

Примітки

  1. Гудзь et al, 1991, с. 105.
  2. Nelson et al, 2008, с. 546.
  3. Nelson et al, 2008, с. 547.
  4. Prescott, 2002, с. 179.
  5. Berg et al, 2007, с. 447.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.