Ізобаричний процес

Ізобарний проце́с (від грец. ísos — рівний, báros — вага) термодинамічний процес, який відбувається при сталому тиску. Прикладом ізобаричного процесу може бути нагрівання води у відкритій посудині, або розширення газу у циліндрі з поршнем, який може вільно пересуватися. В обох випадках тиск дорівнює атмосферному.

Частина серії статей на тему:
Термодинаміка
Графік ізобаричного процесу. Жовта ділянка відповідає роботі газу
Шаблони • Категорія • Портал

При ізобаричному процесі об'єм ідеального газу прямопропорційний температурі (див. Закон Гей-Люссака).

На графіках процес зображується лініями, які називаються ізобарами. Для ідеального газу вони є прямими у всіх діаграмах, які пов'язують параметри T (температура), V (об'єм) і P (тиск).

Робота, внутрішня енергія та кількість теплоти при ізобарному процесі

З визначення роботи слідує, що макроскопічна робота при нескінченно малій зміні об'єму на величину dV при ізобаричному процесі дорівнює:

Повна робота процесу визначається інтегралом від даного виразу:

,

де ΔV — зміна об'єму.

Розглядаючи графік ізобаричного процесу у координатах (p, V) отримати цей результат простіше. Графічно робота є площа фігури під кривою. У випадку ізобаричного процесу це площа прямокутника, яку знаходять за формулою, яку отримано в результаті інтегрування.

Якщо в останній формулі використати рівняння стану ідеального газу, то можна отримати такий результат:

Де, ν кількість речовини, R універсальна газова стала, ΔT — зміна температури.

Зміна внутрішньої енергії ідеального газу може бути знайдена за формулою:

,

де і — число ступенів вільності, яке залежить від кількості атомів у молекулі (3 для одноатомної (наприклад, водень), 5 для двоатомної (наприклад, кисень) і 6 для триатомної і більше (наприклад, молекула водяної пари)).

З визначення та формули теплоємності, формулу для внутрішньої енергії можна переписати у вигляді:

,

де  — молярна теплоємність при сталому об'ємі.

Застосувавши перше начало термодинаміки можна знайти кількість теплоти при ізобаричному процесі:

Тепер до цієї формули підставимо значення роботи та зміни внутрішньої енергії:

Застосувавши рівняння Роберта Майєра () отримаємо:

,

де  — молярна теплоємність при сталому тиску.

Теплоємність системи при ізобаричному процесі більша, ніж при ізохоричному, оскільки теплота потрібна не тільки для зміни внутрішньої енергії термодинамічної системи, а й для виконання цією системою роботи.

Всі формули, які подано вище виводилися з урахуванням незмінної маси речовини під час процесу, або відсутності параметра порядку при хімічній реакції.

Зв'язок з ентальпією

Ізохоричний процес проходить без виконання роботи. Таким чином перше начало термодинаміки для такого процесу записується так: . Тобто кількість теплоти, які отримала чи втратила система, дорівнює зміні функції стану, у цьому випадку внутрішньої енергії. Було б зручно, якщо б для ізобаричного процесу існувало схоже рівняння.

Ще раз перепишемо перший закон термодинаміки для ізобаричного процесу у загальному диференціальному вигляді:

За властивістю диференціала (сума диференціалів дорівнює диференціалу суми) перепишемо це рівняння у такому вигляді:

.

Визначена функція стану (термодинамічний потенціал), яка виражається формулою називається ентальпією і позначається символом H (іноді Е). Отже, ізобаричний процес можна описати рівнянням:

.

Ентропія ізобаричного процесу

Оскільки у системі при ізобаричному процесі відбувається теплообмін із зовнішнім середовищем, то відбувається зміна ентропії. З визначення ентропії випливає:

Вище вже було виведено формулу для визначення кількості теплоти. Перепишемо її у диференціальному вигляді:

,

де ν кількість речовини,  молярна теплоємність при сталому тиску. Отже, мікроскопічна зміна ентропії при ізобаричному процесі може бути визначена за формулою:

Або, якщо проінтегруємо останній вираз, повна зміна ентропії після проходження процесу:

У цьому випадку виносити вираз молярної теплоємності при сталому тиску за знак інтегралу не можна, оскільки вона є функцією, яка залежить від температури.

Зміна густини

Оскільки маса газу залишається незмінною, але об'єм змінюється, то змінюється його густина. Таким чином, рівняння стану ідеального газу можна переписати так:

,

де m маса речовини, R універсальна газова стала, T температура, P тиск, V об'єм, μ молярна маса речовини, ρ густина речовини.

Оскільки тиск, молярна маса та газова стала — незмінні величини, то з останньої рівності випливає, що:

Отже, при ізобаричному процесі густина ідеального газу обернено-пропорційна температурі. Для реального газу таке твердження несправедливе.

Див. також

Використана література

  • Сивухин Д. В. «Общий курс физики». — Издание 3-е, исправленное и дополненное. — М.: Наука, 1990. — Т. II. Термодинамика и молекулярная физика. — 592 с. — ISBN 5-02-014187-9
  • Ландау Л. Д., Лившиц Е. М. (1976). «Теоретическая физика». т. V. Статистическая физика. Часть 1., Москва: Наука.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.