Інтегральна крива

У математиці, інтегральна крива (англ. integral curve) параметрична крива, що представляє певний розв'язок для звичайного диференціального рівняння або системи рівнянь. Якщо диференціальне рівняння представлене як векторне поле або поле напрямків, тоді відповідна інтегральна крива дотична до поля в кожній точці.

Три інтегральні криви для поля напрямків відповідного диференціальному рівнянню dy / dx = x2  x  1.

Інтегральні криві також відомі під іншими назвами, залежно від природи і тлумачення диференціального рівняння або векторного поля. У фізиці, інтегральна крива для електричного або магнітного поля відома як силова лінія, інтегральна крива для поля швидкостей флюїду відома як лінія потоку. В динамічних системах, інтегральна крива для диференціального рівняння, яке керує системою згадується як траєкторія або орбіта.

Визначення

Припустимо, що F векторне поле: тобто, вектор-функція з декартовими координатами (F1,F2,...,Fn); і x(t) парметрична крива з координатами (x1(t),x2(t),...,xn(t)). Тодіx(t) — це інтегральна крива F якщо вона є розв'язком такої автономної системи звичайних диференціальних рівнянь:

Таку систему можна записати як одне векторне рівняння

Таке рівняння каже, що дотичний вектор до цієї кривої в будь-якій точці x(t) уздовж кривої є саме вектором F(x(t)), і отже ця крива x(t) є в кожній точці дотичною до векторного поля F.

Див. також

Література

  1. Самойленко А. М.; Перестюк М. О.; Парасюк I.О. (2003 р.). Диференціальні рівняння. Київ: Либідь. ISBN 966-06-0249-9. Архів оригіналу за 17 червня 2014. Процитовано 2 грудня 2015.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.