Третя похідна

У диференційному численні, третя похідна або похідна третього порядку — це швидкість, з якою змінюється друга похідна, або швидкість зміни швидкості зміни, яка використовується, насамперед, для визначення відхилення.[1] Третя похідна функції можна позначати через:

Перераховані вище позначення є найбільш поширеними.

Позначення

Нехай — функція деякої змінної х. Тоді третя похідна від задається наступним чином: . У Нотації Лейбніца: .

Приклад

Нехай . Тоді та . Тому, третя похідна від f(x):

У Нотації Лейбніца:

Застосування у геометрії

У диференціальній геометрії скрут кривої - основна властивість кривої у тривимірному просторі. Скрут кривої обчислюється за допомогою третіх похідних координатних функцій (або вектора положення), що описують криву.[2]

Застосування у фізиці

У фізиці, насамперед у кінематиці, ривок визначається як третя похідна від радіус-вектору об'єкта. Це швидкість, з якою змінюється прискорення. Формула ривку:

де j ( t ) - функція ривка відносно часу, а r ( t ) - позиційна функція об'єкта відносно часу.

Див. також

Посилання

  1. Schot, Stephen (November 1978). Aberrancy: Geometry of the Third Derivative. Mathematics Magazine. 5 51: 259–275. JSTOR 2690245. doi:10.2307/2690245.
  2. do Carmo, Manfredo (1976). Differential Geometry of Curves and Surfaces. ISBN 0-13-212589-7.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.