Сонце

Со́нце (лат. Sol) зоря, що є центром Сонячної системи.

Сонце
Зображення Сонця в неприродному кольорі, щоб зобразити його турбулентну поверхню. (авторство: NASA-SDO)
Спостережувані дані
Середня відстань
до Землі
1.496×108 км
8 хв 19 с на швидкості світла
Видима зоряна величина (V) −26.74[1]
Абсолютна зоряна величина 4.83[1]
Спектральний клас G2V
Металічність Z = 0.0122[2]
кутовий розмір 31.6-32.7′[3]
Орбітальні характеристики
Середня відстань
до центру Чумацького Шляху
2.7×1017 км
27200 світлових років
Галактичний період (2.25-2.50)×108 років
Швидкість 220 км/с (орбітальна навколо центру Галактики)
20 км/с (відносно середньої швидкості інших зір в околицях)
370 км/с[4] (відносно реліктового випромінювання)
Фізичні характеристики
Екваторіальний радіус 696342±65 км[5]
109 × земних[6]
Сплющеність 9×10−6
Площа поверхні 6.09×1012 км²[6]12000 × земних[6]
Об'єм 1.41×1018 км³[6]
1300000 × земних
Маса (1.98855±0.00025)×1030 кг[1]
333000 × земних[1]
Середня густина 1.408 г/см³
1.408×103 кг/м3[1][6][7]
0.255 × земних[1][6]
Густина в центрі (модельована) 1.622×105 кг/м3[1]
Екваторіальна гравітація на поверхні 274.0 м/с2[1]
28 × прискорення біля земної поверхні[6]
Друга космічна швидкість
(з поверхні)
617.7 км/с[6]
55 × земних[6]
Температура в центрі (модельована) 1.57×107 K[1]
Фотосфера (ефективна): 5778 K[1]
Корона: ≈5×106 K
Світність (Lsol) 3.846×1026 Вт[1]
3.75×1028 люмен
98 лм/Вт Світлова віддача
Середня енергетична яскравість (Isol) 2.009×107 Вт·м−2·ср−1
Вік ≈4.6 мільярдів років[8][9]
Обертові характеристики
Нахил осі 7,25°[1]
(до екліптики)
67.23°
(до галактичної площини)
Пряме піднесення
Північного полюсу[10]
286,13°
19 год 4 хв 30 с
Схилення
Північного полюсу
+63.87°
63° 52' Пн
Сидеричний період обертання
(на екваторі)
25.05 днів[1]
(на широті 16°) 25.38 днів[1]
25 д 9 год 7 хв 12 с[10]
(на полюсах) 34.4 днів[1]
Швидкість обертання
(на екваторі)
7.189×103 км/год[6]
Фотосферний склад (за масою)
Водень 73,46 %[11]
Гелій 24,85 %
Оксиген 0,77 %
Карбон 0,29 %
Залізо 0,16 %
Неон 0,12 %
Нітроген 0,09 %
Кремній 0,07 %
Магній 0,05 %
Сульфур 0,04 %

Загальний опис

Сонце — типова зоря головної послідовності спектрального класу G2. Воно майже ідеально сферичне і являє собою гарячу плазму, сплетену магнітними полями[12]. За діаметру приблизно 1.3 млн км, що в 109 разів більше, ніж земний, має масу близько 2 ×1030 кг, що більше земної приблизно в 330 000 разів. Джерелом енергії Сонця є термоядерні реакції в його ядрі. Земля та сім інших планет обертаються навколо Сонця. Крім них, навколо Сонця обертаються комети, астероїди, метеороіди, космічний пил та інші дрібні об'єкти. Маса Сонця становить 99,866 % від загальної маси всієї Сонячної системи[13]. Сонячне випромінювання підтримує життя на Землі (фотони необхідні для початкових стадій процесу фотосинтезу) та визначає клімат нашої планети[14]. Сонце складається з водню (~73 % від маси і ~92 % від об'єму), гелію (~ 25 % від маси і ~ 7 % від об'єму) та інших елементів з меншою концентрацією (менше 2 % від маси) заліза, нікелю, кисню, азоту, кремнію, сірки, магнію, вуглецю, неону, кальцію та хрому. Середня густина Сонця становить 1400 кг/м³. Температура поверхні Сонця становить близько 6000 К[15]. Сонце світить майже білим світлом, але через сильніше розсіювання і поглинання короткохвильової частини спектра атмосферою Землі пряме світло Сонця біля поверхні нашої планети набуває певного жовтого відтінку. Якщо небо ясне, то блакитний відтінок розсіяного світла складається з жовтуватим прямим сонячним світлом і загальне освітлення об'єктів на Землі стає білим.

Сонячний спектр містить лінії іонізованих та нейтральних металів, а також іонізованого водню. У нашій Галактиці налічується понад 100 млрд зірок. При цьому 85 % зірок нашої галактики — це зірки, менші за Сонце (здебільшого червоні карлики). Як і всі зорі головної послідовності, Сонце виробляє енергію шляхом термоядерного синтезу. У Сонця переважна частина енергії виробляється при синтезі гелію з водню.

Відстань Сонця від Землі — близько 149,6 млн км, приблизно дорівнює астрономічній одиниці, а видимий кутовий діаметр, як і в Місяця — трохи більше пів градуса (31-32 мінути). Сонце перебуває на відстані близько 26 000 світлових років від центру «Чумацького Шляху» й обертається навколо нього з періодом близько 220 млн років.

Характеристики та хімічний склад Сонця

Сонце — центральне і наймасивніше тіло Сонячної системи. Його маса приблизно в 333 000 раз більша за масу Землі та у 750 разів перевищує масу всіх інших планет, разом узятих. Сонце — потужне джерело енергії, яку воно постійно випромінює в усіх ділянках спектра електромагнітних хвиль — від рентгенівських і ультрафіолетових променів до радіохвиль. Це випромінювання сильно впливає на всі тіла Сонячної системи: нагріває їх, позначається на атмосферах планет, дає світло й тепло, необхідні для життя на Землі.

Спектральний клас Сонця

Водночас Сонце — найближча до нас зоря, в якої, на відміну від усіх інших зірок, можна спостерігати диск, і за допомогою телескопа вивчати на ньому дрібні деталі, розміром до кількох сотень кілометрів. Це типова зоря, тому її вивчення допомагає зрозуміти природу зірок взагалі. За зоряною класифікацією Сонце має спектральний клас G2V. У поширеній літературі Сонце досить часто класифікують як жовтий карлик.

Діаметр

Видимий кутовий діаметр Сонця дещо змінюється через еліптичність орбіти Землі. У середньому він становить близько 32' або 1/107 радіана, тобто діаметр Сонця дорівнює 1/107 а.о., або приблизно 1 400 000 км. Згідно з останніми спостереженнями НАСА, радіус Сонця становить 696 342 км із похибкою 65 км[16].

Хімічний склад

Хімічний склад (за кількістю атомів) визначено з аналізу сонячного спектра:

  • водень становить близько 90 %,
  • гелій — 9,88 %,
  • інші елементи — порядку 0,1 %, зокрема: на 1 млн атомів водню припадає 851 атом кисню, 398 вуглецю, 123 неону, 100 азоту, 47 заліза, 38 магнію, 35 кремнію, 16 сірки, 4 аргону, 3 алюмінію, по 2 атоми нікелю, натрію і кальцію, а також зовсім небагато всіх інших елементів.

Речовина Сонця дуже іонізована, тобто атоми втратили свої зовнішні електрони й разом з ними стали вільними частинками іонізованого газу плазми.

Густина та температура

Середня густина сонячної речовини ρ ≈ 1400 кг/м³. Це значення близьке до густини води та в 1000 разів більше густини повітря біля поверхні Землі. У зовнішніх шарах Сонця густина в мільйони разів менша, а в центрі — у 100 раз більша за середню.

Обчислення, які враховують зростання густини й температури до центра, показують, що в центрі Сонця густина становить близько 1,5×105 кг/м³, тиск — близько 2×1018 Па, а температура — близько 15 000 000 К.

За такої температури ядра атомів водню (протони та дейтрони) мають дуже великі швидкості (сотні км/с) і можуть наближатися одне до одного, попри дію електростатичної сили відштовхування. Деякі зіткнення завершуються ядерними реакціями, внаслідок яких з водню утворюється гелій і вивільняється значна кількість енергії, що перетворюється на тепло. Ці реакції є джерелом енергії Сонця на сучасному етапі його еволюції. Внаслідок цього кількість гелію в центральній частині світила поступово збільшується, а водню — зменшується.

Потік енергії, що виникає в надрах Сонця, передається в зовнішні шари й розподіляється на дедалі більшу площу. Внаслідок цього температура сонячної плазми знижується з віддаленням від центра. Залежно від температури й характеру процесів, що нею визначаються, Сонце можна умовно поділити на 4 частини:

  • внутрішня, центральна частина (ядро), де тиск і температура забезпечують перебіг ядерних реакцій; вона простягається від центра на відстань приблизно 1/3 радіуса;
  • промениста зона (відстань від 1/3 до 2/3 радіуса), в якій енергія передається назовні внаслідок послідовного поглинання і випромінювання квантів електромагнітної енергії;
  • конвективна зона — від верхньої частини «променистої» зони майже до видимої поверхні Сонця. Тут температура швидко зменшується з наближенням до видимої поверхні світила, внаслідок чого збільшується концентрація нейтральних атомів, речовина стає прозорішою, променисте перенесення стає менш ефективним і тепло передається здебільшого шляхом перемішування речовини (конвекція), подібно до кипіння рідини в посудині, яка підігрівається знизу;
  • сонячна атмосфера, що починається відразу за конвективною зоною і сягає далеко за межі видимого диска Сонця. Нижній шар атмосфери фотосфера, тонкий шар газів, який ми сприймаємо як поверхню Сонця. Верхніх шарів атмосфери безпосередньо (хромосфери та корони) не видно через значну розрідженість, їх можна спостерігати або під час повних сонячних затемнень, або за допомогою спеціальних приладів.

Сонячна активність і сонячні цикли

Спостерігаючи сонячні плями в телескоп, Галілео Галілей помітив, що вони пересуваються вздовж видимого диска Сонця. На цій підставі він зробив висновок, що Сонце обертається навколо власної осі. Кутова швидкість обертання світила зменшується від екватора до полюсів, точки на екваторі здійснюють повний оберт за 25 діб, а поблизу полюсів зоряний період обертання Сонця збільшується до 30 діб. Земля рухається своєю орбітою в тому ж напрямку, в якому обертається Сонце. Тому відносно земного спостерігача період його обертання більший і пляма в центрі сонячного диска знову пройде через центральний меридіан Сонця за 27 діб.

Сонячна активність

Сукупність явищ, викликаних генерацією потужних магнітних полів на Сонці, називають сонячною активністю. Ці поля проявляються у фотосфері як сонячні плями та викликають такі події, як: сонячні спалахи, генерацію потоків пришвидшених частинок, зміни рівня електромагнітного випромінювання Сонця в різних діапазонах, корональні викиди маси, збурення сонячного вітру, варіації потоків галактичних космічних променів (Форбуш-ефект), тощо.

Із сонячною активністю пов'язані також зміни геомагнітної активності (зокрема, магнітні бурі), які є наслідком збурень міжпланетного середовища, що досягають Землі, зумовлених, у свою чергу, активними явищами на Сонці.

Одним з найбільш поширених показників рівня сонячної активності є число Вольфа, пов'язане з кількістю сонячних плям на видимій півсфері Сонця. Загальний рівень сонячної активності змінюється з характерним періодом, приблизно рівним 11 років (так званий «цикл сонячної активності» або «одинадцятирічний цикл»). Цей період витримується неточно і в XX столітті був ближчим до 10 років, а за останні 300 років змінювався приблизно від 7 до 17 років. Циклам сонячної активності надають послідовні номери, з початком від умовно обраного першого циклу, максимум якого був 1761 року. 2000 року спостерігався максимум 23-го циклу сонячної активності.

Існують також варіації сонячної активності більшої тривалості. Так, у другій половині XVII століття сонячна активність і, зокрема, її 11-річний цикл були значно ослаблені (мінімум Маундера). У цю епоху в Європі відзначалося зниження середньорічних температур (так званий малий льодовиковий період), можливо, зумовлене впливом сонячної активності на клімат Землі. Існує також точка зору, що глобальне потепління до деякої міри викликано підвищенням рівня сонячної активності в другій половині XX століття. Проте, механізми такого впливу поки ще недосить зрозумілі.

Найбільша група сонячних плям за всю історію спостережень була відзначена у квітні 1947 у південній півкулі Сонця. Її максимальна довжина становила 300 000 км, найбільша ширина — 145 000 км[17]. Групу плям було добре видно неозброєним оком у вечірні години. Згідно з каталогом Пулковської обсерваторії, ця група (№ 87 за 1947 рік) проходила по видимій із Землі півсфері Сонця з 31 березня по 14 квітня 1947 року, максимальна її площа становила 6761 мчп (мільйонних часток площі півсфери Сонця), що приблизно в 36 разів більше площі поверхні Землі, а максимальна площа найбільшої плями в групі — 5055 мчп; кількість плям у групі досягала 172[18].

Сонце як змінна зоря

Оскільки магнітна активність Сонця схильна до періодичних змін, а разом з цим змінюється і його світність

8 хвилин тому Сонце вже заховалося за обрій, але світло від нього лише досягло Землі (південь України).

(див. Сонячний цикл), його можна розглядати як змінну зорю. У роки максимуму активності Сонце яскравіше, ніж у роки мінімуму. Амплітуда змін сонячної сталої досягає 0,1 % (в абсолютних значеннях це 1 Вт/м², тоді як середнє значення сонячної постійної 1361,5 Вт/м²)[19].

Також деякі дослідники відносять Сонце до класу малоактивних змінних зір типу BY Дракона[20][21]. Поверхня таких зір вкрита великими плямами (до 30 % від загальної площі), і, внаслідок обертання цих зір, із Землі спостерігаються зміни їх блиску. У Сонця така змінність дуже слабка.

Еволюція Сонця як зорі

Сонце є зорею третього покоління (популяції I) із високим вмістом металів, тобто, воно утворилося з речовини, яка була збагачена важкими елементами, що утворилися в надрах зір першого й другого поколінь (відповідно популяцій III і II).

Поточний вік Сонця (точніше — час його існування на головній послідовності), оцінений за допомогою комп'ютерних моделей зоряної еволюції, дорівнює приблизно 4,57 млрд років.

Вважається, що Сонце сформувалося приблизно 4,59 млрд років тому, коли стиснення під дією сил гравітації хмари молекулярного водню призвело до утворення зорі типу T Тільця.

Зоря такої маси, як Сонце, має перебувати на головній послідовності близько 10 млрд років. Таким чином, зараз Сонце перебуває приблизно в середині свого еволюційного шляху. На сучасному етапі в сонячному ядрі відбуваються термоядерні реакції перетворення водню на гелій. Щосекунди близько 4 млн тонн речовини перетворюється на променисту енергію, в результаті чого генерується сонячне випромінювання й потік сонячних нейтрино.

Відповідно до сучасних уявлень через 4-5 млрд років воно перетвориться на червоного гіганта. У міру того, як водневе паливо в ядрі буде вигоряти, його зовнішня оболонка буде розширюватися, а ядро — стискатися й нагріватися. Приблизно через 7,8 млрд років, коли температура в ядрі досягне приблизно 100 млн К, у ньому почнеться термоядерна реакція синтезу вуглецю з гелію. На цій фазі еволюції температурні нестійкості всередині Сонця призведуть до того, що воно почне втрачати масу й скидати оболонку. Зовнішні шари Сонця на той час досягнуть сучасної орбіти Землі. Дослідження показують, що ще до того часу втрата Сонцем маси призведе до того, що Земля перейде на більш віддалену від Сонця орбіту і, таким чином, уникне поглинання зовнішніми шарами сонячної плазми[22][23].

Попри це, уся вода на Землі перейде в газоподібний стан, а більша частина її атмосфери розсіється в космічному просторі[22]. Збільшення світності Сонця в цей період буде таким, що протягом наступних 500—700 млн років поверхня Землі буде занадто гарячою для того, щоб на ній могло існувати життя в його сучасному вигляді.

Після того, як Сонце пройде фазу червоного гіганта, термічні пульсації приведуть до того, що його зовнішня оболонка буде зірвана й з неї утворюється планетарна туманність. У центрі цієї туманності залишиться сформований із дуже гарячого ядра білий карлик, який протягом мільярдів років буде поступово остигати й згасати. Такий життєвий цикл вважається типовим для зір малої та середньої маси. Маса Сонця недостатня для того, щоб його еволюція завершилася вибухом наднової й утворенням чорної діри.

Структура

Сонце у розрізі.

Внутрішня будова Сонця

Всередині Сонця (під фотосферою) виокремлюють такі структурні шари:

  • сонячне ядро — внутрішня частина, де відбуваються термоядерні реакції, простягається до 173 тис. км від центру
  • зона променистого переносу, в якій перенесення енергії від центральної частини до верхніх шарів відбувається переважно шляхом випромінювання, простягається від ядра до 494 тис. км від центру.
  • конвективна зона, в якій перенесення теплової енергії відбувається переважно шляхом конвекції, тобто рухами розпеченого газу, і яка простягається до видимої поверхні Сонця.

Сонячне ядро

Центральна частина Сонця радіусом приблизно 150—175 тис. км (тобто 20-25 % від радіуса Сонця), в якій відбуваються термоядерні реакції, називається сонячним ядром. Густина речовини в ядрі становить приблизно 150 000 кг/м³ (що в 150 разів більше густини води і в ~6,6 разів перевищує густину найщільнішого металу на Землі осмію), а температура в центрі ядра — понад 14 млн К. В ядрі відбуваються термоядерні реакції, в результаті яких із чотирьох протонів утворюється ядро гелію-4. Внаслідок цього щосекунди на випромінювання перетворюється 4,26 млн тонн речовини, однак ця величина нікчемна в порівнянні з масою Сонця — 2×1027 тонн. Потужність, що виділяється у різних зонах ядра, залежить від їх відстані до центру Сонця. У самому центрі відповідно до теоретичних оцінок вона сягає 276,5 Вт/м³, що на порядок менше питомого тепловиділення сплячої людини[24]. Питоме ж тепловиділення Сонця у цілому ще на два порядки менше. Завдяки настільки невеликому питомому енерговиділенню, запасів «палива» (водню) для підтримки термоядерної реакції вистачає на кілька мільярдів років.

Ядро — єдине місце на Сонці, в якому виділяється енергія, інша частина зірки нагріта цією енергією. Вся енергія ядра послідовно проходить крізь шари, аж до фотосфери, з якої випромінюється у вигляді сонячного світла.

Аналіз даних, здійснений місією SOHO, довів, що в ядрі швидкість обертання Сонця навколо своєї осі значно вища, ніж на поверхні.

Зона променистого переносу

Над ядром, на відстані приблизно від 0,2-0,25 до 0,7 радіуса Сонця, розташована зона променистого переносу. У цій зоні перенесення енергії відбувається здебільшого за допомогою випромінювання і поглинання фотонів. Напрямок кожного конкретного фотона, випроміненого шаром плазми, ніяк не залежить від того, які фотони плазмою поглиналися, тому він може як потрапити до вищого шару в променистій зоні, так і повернутися назад, до центру. Через це проміжок часу, за який багаторазово перевипромінений фотон (спочатку утворений в ядрі) досягає конвективної зони, може вимірюватися мільйонами років. В середньому цей термін становить 170 тис. років.

Зміна температури у цій зоні становить від 2 млн К на поверхні до 7 млн К у глибині[25]. Густина речовини змінюється від 0,2 г/см³ (на поверхні) до 20 г/см³ (у глибині). У цій зоні відсутні макроскопічні конвекційні рухи, що свідчить про те, що градієнт температури в ній більший, ніж градієнт променевої рівноваги[26]. Для порівняння, у червоних карликів зона конвекції охоплює майже всю зорю.

Конвективна зона Сонця

Ближче до поверхні Сонця температура та густина речовини недостатні для повного перенесення енергії шляхом перевипромінення. Виникає вихрове перемішування плазми, і перенесення енергії до поверхні (фотосфери) здійснюється переважно рухом речовини. Охолоджуючись на поверхні, речовина фотосфери занурюється вглиб конвективної зони, а в нижній частині речовина нагрівається від зони променистого перенесення і піднімається вгору, обидва процеси йдуть зі значною швидкістю. Такий спосіб передачі енергії називається конвекцією, а підповерхневий шар Сонця завтовшки приблизно 200 000 км, де вона відбувається — конвективною зоною. З наближенням до поверхні температура спадає в середньому до 5800 К, а густина газу стає у 1000 разів меншою густини приземного повітря[27].

За сучасними даними, роль конвективної зони у фізиці сонячних процесів надзвичайно велика, оскільки саме в ній відбувається різноманітний рух сонячної речовини. Терміки в конвекційній зоні викликають на поверхні гранули (які по суті є вершинами терміків) і супергрануляцію. Швидкість потоків становить в середньому 1-2 км/с, а максимальні її значення досягають 6 км/с. Час життя гранули становить 10-15 хвилин, що можна порівняти із періодом, за який газ може обійти навколо гранули. Отже, терміки в конвекційній зоні перебувають в умовах, різко відмінних від умов, що сприяють виникненню комірок Бенара. Рухи в цій зоні викликають ефект магнітного динамо, і відповідно породжують магнітне поле, що має складну структуру[27].

Атмосфера Сонця

Сонячну атмосферу можна умовно поділити на кілька шарів.

Фотосфера

Найглибший шар атмосфери, товщиною 200—300 км, називається фотосферою (сфера світла). З нього випромінюється майже вся енергія, яка спостерігається у видимій частині спектра, вона утворює видиму поверхню Сонця. Її товщина відповідає оптичній товщині приблизно у 2/3. Температура із наближенням до зовнішнього краю фотосфери зменшується з 6600 К до 4400 К, зовнішні шари фотосфери охолоджуються внаслідок випромінювання в міжпланетний простір.

Плазма ниткоподібної форми, що з'єднує регіони з різною магнітною полярністю.
(Фото з оптичного телескопа на супутнику Hinode, 12.01.2007)

На фотографіях фотосфери добре помітно її тонку структуру у вигляді яскравих «зернят» — гранул розміром близько 1000 км, розмежованих вузькими темними проміжками. Ця структура називається грануляцією. Вона є результатом руху газів, який відбувається в розташованій під атмосферою конвективній зоні Сонця.

Ефективна температура фотосфери в цілому становить 5778 К. Вона може бути розрахована за законом Стефана — Больцмана, за яким потужність випромінювання абсолютно чорного тіла прямо пропорційна четвертому ступеню температури тіла. Водень за таких умов майже повністю перебуває в нейтральному стані. Фотосфера утворює видиму поверхню Сонця, від якої визначаються розміри Сонця, відстань від поверхні Сонця і т. д. Оскільки газ у фотосфері є доволі розрідженим, то швидкість його обертання багато менша швидкості обертання твердих тіл. При цьому газ в екваторіальній і полярних областях, рухається нерівномірно — на екваторі він здійснює оберт за 24 дні, на полюсах — за 30 днів.

У спектрі видимого випромінювання Сонця, що майже цілком утворюється у фотосфері, зниженню температури у зовнішніх шарах відповідають темні лінії поглинання. Вони називаються фраунгоферовими на честь німецького оптика Й. Фраунгофера (1787—1826), який уперше 1814 року замалював кілька сотень таких ліній. З тієї ж причини (зниження температури від центра Сонця) сонячний диск ближче до краю здається темнішим.

Часом у деяких ділянках фотосфери темні проміжки між гранулами збільшуються, утворюються невеликі круглі пори, деякі з них розвиваються у великі темні плями, оточені напівтінню, що складається з довгастих, радіально витягнутих фотосферних гранул.

Хромосфера і корона Сонця

Сонячна корона під час сонячного затемнення 1999 року
Знімок Сонця 9 квітня 2013 року на довжині хвилі 17 нм. Зображення від NASA/SDO.

У найвищих шарах фотосфери температура становить близько 4000 К. За такої температури та густини 10−3—10−4 кг/м³ водень стає практично нейтральним. Іонізовано лише близько 0,01 % атомів, здебільшого металів.
Однак вище в атмосфері температура, а разом з нею й іонізація, знову починають підвищуватися, спочатку повільно, а потім дуже швидко. Частина сонячної атмосфери, в якій підвищується температура й послідовно іонізуються водень, гелій та інші елементи, називається хромосферою, її температура становить десятки й сотні тисяч кельвінів. У вигляді блискучої рожевої облямівки хромосферу видно навколо темного диска Місяця в нечасті моменти повних сонячних затемнень. Вище від хромосфери температура сонячних газів становить 106 — 2×106 К і далі протягом багатьох радіусів Сонця майже не змінюється.

Ця розріджена й гаряча оболонка називається сонячною короною. У вигляді променистого перлового сяйва її можна спостерігати під час повної фази затемнення Сонця, тоді вона являє надзвичайно гарне видовище. «Випаровуючись» у міжпланетний простір, газ корони утворює потік гарячої розрідженої плазми, що постійно тече від Сонця й називається сонячним вітром.. Корона в основному складається з протуберанців та енергетичних вивержень, що вириваються й вивергаються на кілька сотень, а інколи навіть на відстань більше мільйона кілометрів у простір, утворюючи таким чином сонячний вітер. Середня корональна температура становить від 1 до 2 млн К, а максимальна, в окремих ділянках, — до 20 млн К.

Надзвичайно інтенсивний нагрів цього шару викликано, мабуть, ефектом магнітного перез'єднання і впливом ударних хвиль. Форма корони змінюється в залежності від фази циклу сонячної активності: у періоди максимальної активності вона має округлу форму, а в мінімумі — витягнута уздовж сонячного екватора. Оскільки температура корони дуже висока, вона інтенсивно випромінює в ультрафіолетовому й рентгенівському діапазонах. Це випромінювання поглинається земною атмосферою, але останнім часом з'явилася можливість вивчати його за допомогою космічних апаратів. Випромінювання на різних ділянках корони відбувається нерівномірно. Існують гарячі активні та спокійні ділянки, а також корональні діри із порівняно невисокою температурою в 600 000 К, з яких у простір виходять магнітні силові лінії. Така («відкрита») магнітна конфігурація дозволяє частинкам залишати Сонце, тому сонячний вітер випромінюється здебільшого з корональних дір.

Видимий спектр сонячної корони складається з трьох різних складових, названих L, K і F компонентами (або, відповідно, L-корона, K-корона і F-корона; ще одна назва L-компоненти — E-корона. K-компонента — неперервний спектр корони. На його тлі до висоти 9-10' від видимого краю Сонця видно емісійну L-компоненту. Починаючи з висоти близько 3' (кутовий діаметр Сонця — близько 30') і вище видно Фраунгоферовий спектр, такий же як і спектр фотосфери. Він становить F-компоненту сонячної корони. На висоті 20' F-компонента домінує в спектрі корони. Висота 9-10' вважається межею, що відокремлює внутрішню корону від зовнішньої. Випромінювання Сонця з довжиною хвилі менше 20 нм, повністю виходить з корони. Це означає, що, наприклад, на поширених знімках Сонця на довжинах хвиль 17,1 нм (171 Å), 19,3 нм (193 Å), 19,5 нм (195 Å), видно виключно сонячну корону з її елементами, а хромосферу та фотосферу — не видно. Дві корональні діри майже завжди наявні біля північного і південного полюсів Сонця, а інші лише тимчасово з'являються на його видимій поверхні, і практично зовсім не випромінюють рентгенівське випромінювання.

Хромосферу та корону найкраще спостерігати з супутників та орбітальних космічних станцій в ультрафіолетових і рентгенівських променях.

Магнітні поля Сонця

Оскільки сонячна плазма має високу електропровідність, у ній можуть виникати електричні струми і, як наслідок, магнітні поля. Спостережувані в сонячній фотосфері магнітні поля поділяють на два типи, відповідно до їх масштабів.

Великомасштабне (загальне або глобальне) магнітне поле з характерними розмірами, порівняними з розмірами Сонця, має середню напруженість на рівні фотосфери близько декількох гаус. У мінімумі циклу сонячної активності воно має приблизно дипольну структуру, напруженість поля на полюсах Сонця максимальна. Потім, у міру наближення до максимуму циклу сонячної активності, напруженість поля на полюсах поступово зменшуються і через один-два року після максимуму циклу дорівнює нулю (так звана «переполюсовка сонячного магнітного поля»). У цій фазі загальне магнітне поле Сонця не зникає повністю, але його структура має не дипольний, а квадрупольний характер. Після цього напруженість сонячного диполя знову зростає, але він має вже іншу полярність. Таким чином, повний цикл змін загального магнітного поля Сонця, з урахуванням зміни полярності, дорівнює подвоєній тривалості 11-річного циклу сонячної активності — приблизно 22 роки («закон Хейла»).

Середньо- й дрібномасштабні (локальні) поля Сонця відрізняються значно більшою напруженістю та меншою регулярністю. Найпотужніші магнітні поля (до декількох тисяч гаус) спостерігаються в групах сонячних плям у максимумі сонячного циклу. Типовою є ситуація, коли магнітне поле плям у західній частині групи, зокрема, найбільшої плями (т. зв. «лідера групи») збігається з полярністю загального магнітного поля на відповідному полюсі Сонця («p-полярністю»), а в східній («хвостовій») частині — протилежна їй («f-полярність»). Таким чином, магнітні поля плям мають, зазвичай, біполярну або мультиполярну структуру. У фотосфері також спостерігаються уніполярні ділянки магнітного поля, які, на відміну від груп сонячних плям, розташовуються ближче до полюсів та мають значно меншу напруженість магнітного поля (кілька гаус), але велику площу та тривалість життя (до декількох обертів Сонця).

Відповідно до сучасних уявлень магнітне поле Сонця генерується в нижній частині конвективної зони за допомогою механізму гідромагнітного конвективного динамо, а потім підіймається у фотосферу під впливом магнітної плавучості. Цим же механізмом пояснюється 22-річна циклічність сонячного магнітного поля.

Існують також деякі натяки[28] на наявність первинного (тобто такого, що утворилося разом із Сонцем) або, принаймні, магнітного поля, що дуже довго існує нижче дна конвективної зони — у променистій зоні та ядрі Сонця.

Рух і положення Сонця

Орбітальна швидкість Сонця дорівнює 217 км/с — таким чином, воно долає один світловий рік за 1400 земних років, а одну астрономічну одиницю — за 8 земних діб. Наразі Сонце перебуває у внутрішньому краї рукава Оріона нашої Галактики, між рукавом Персея і рукавом Стрільця, у так званій «Місцевій міжзоряній хмарі» — ділянці підвищеної щільності, що розташована, у свою чергу, у «Місцевому міхурі» — зоні розсіяного високотемпературного міжзоряного газу. Серед 50 найближчих зір, що наразі відомі (у межах 17 світлових років), Сонце є четвертою за яскравістю зорею (його абсолютна зоряна величина +4,83m). Орбіта Сонця навколо Галактики приблизно еліптична з вкладом збурень від галактичних спіральних рукавів та неоднорідного розподілу маси. Крім того, сонце коливається вгору і вниз відносно площини Галактики приблизно 2.7 раз на орбіту. Є припущення, що проходження Сонця крізь зони вищої густини спіральних рукавів збігаються з масовими вимираннями на Землі[29], можливо, через зіткнення з космічними тілами.[30]

Спостереження Сонця

У 1905 році Джордж Еллері Гейл (англ. George Ellery Hale) в обсерваторії Маунт-Вілсон встановив перший сонячний телескоп побудований в невеликій обсерваторії, і зайнявся пошуком відповіді на проблему походження плям на Сонці, відкритих Галілеєм. Джордж Хейл відкрив, що плями на Сонці викликані магнітним полем, оскільки воно призводить до зниження температури поверхні. На сьогодні Сонце постійно спостерігають із численних наземних обсерваторій. Проте найбільш детальну та цінну інформацію про природу та активність нашої найближчої зорі можна отримати лише за допомогою орбітальних телескопів таких як SOHO, Обсерваторія сонячної динаміки та інші.

Космічні дослідження Сонця

Зовнішні відеофайли
1. Як долетіти до Сонця // Канал «Цікава наука» на YouTube, 26 листопада 2020.

Атмосфера Землі в багатьох діапазонах заважає проходженню електромагнітного випромінювання із космосу. Крім того, навіть у видимій частині спектру, для якої атмосфера майже прозора, зображення можуть викривлюватись її коливаннями. Тому, якщо потрібно отримати дуже чітке зображення Сонця, дослідити його ультрафіолетове чи рентгенівське випромінювання, точно виміряти сонячну сталу, то спостереження проводять з аеростатів, ракет, супутників і космічних станцій.

Історія

  • Фактично перші позаатмосферні спостереження Сонця були проведені другим штучним супутником Землі «Спутник-2» в 1957 році. Спостереження проводились в декількох діапазонах від 1 до 120 ангстрем, що виділялись за допомогою органічних та металічних фільтрів[31]. 1959 року, на досліді було виявлено сонячний вітер з допомогою іонних пасток космічних апаратів «Луна-1» і «Луна-2».[32][33][34].
  • Першими космічними апаратами, створеними навмисно для вивчення Сонця і дослідження сонячного вітру, стали створені NASA супутники серії «Піонер» з номерами 5—9, що були запущені між 1960 і 1968 роками. Ці супутники обертались навколо Сонця поблизу орбіти Землі і виконували детальні вимірювання параметрів сонячного вітру. Піонер 9 працював дуже довго, передаючи дані аж до травня 1983 року.[35][36]

Сучасність

  • Обсерваторія сонячної динаміки призначена для дослідження впливу Сонця на Землю і навколоземний простір шляхом вивчення сонячної атмосфери на малих масштабах часу і простору в багатьох довжинах хвиль одночасно.
  • Місія Solar Terrestrial Relations Observatory (STEREO) була запущена в жовтні 2006 року. Два подібні апарати було запущено на орбіту Землі навколо Сонця — один позаду, другий попереду нашої планети, що дозволило отримати стереозображення світила і вивчати в 3D, наприклад, корональні викиди Сонця.[37][38]
  • Hinode — японський супутник, запущений в 2006 році, що вивчає динаміку магнітних полів Сонця, а також варіацію світності, сонячний вітер та інше.[39]
  • 4 серпня 2019 року відбудеться запуск першого зонда, що наблизиться на рекордно близьку відтань до Сонця. Апарат Parker Solar Probe є розробкою NASA і вже отримав найважливіший елемент для тривалості свого перебування в космосі — надміцний щит, який витримує до 1400°С. На відстані 6.4 млн км від Сонця цей теплозахисний екран візьме на себе увесь жар, дозволяючи решті пристрою справно працювати. Вага захисної конструкції становить 80 кг. Складається щит із двошарового вуглецевого композита та товстого шару піни. Метою цієї подорожі до Сонця є вивчення явища сонячних вітрів, котрі впливають на роботу енергомереж та супутників на орбіті Землі.[40]

Ефекти при спостереженні

Шлях, що проходить за рік місце Сонця на небосхилі в один і той час щодня, називають аналемою. Вона подібна до витягнутої цифри 8 й витягнута вздовж осі південь — північ.

Рідко при заході чи сході Сонця можна спостерігати оптичний ефект під назвою зелений промінь. Він викликаний світлом від Сонця, коли воно знаходиться ще за обрієм. Це світло зазнає рефракції в атмосфері Землі (зазвичай через інверсію температури) в бік спостерігача. Світло коротшої довжини хвилі (фіолетове, синє, зелене) відхиляється більше, ніж світло більшої довжини (жовте, оранжеве, червоне), однак через розсіяння Релея фіолетове і синє розсіюється більше, залишаючи зелене переважати в промені.[41]

Гіпотези та теоретичні проблеми

Ядерні реакції, що відбуваються в ядрі Сонця, призводять до утворення великої кількості електронних нейтрино. При цьому вимірювання потоку нейтрино на Землі, які постійно виконуються з кінця 1960-х років, показали, що кількість зареєстрованих сонячних електронних нейтрино приблизно удвічі-втричі менша, ніж передбачає стандартна сонячна модель, яка описує процеси на Сонці. Ця неузгодженість між дослідом та теорією, отримала назву «проблема сонячних нейтрино» та понад 30 років була однією з загадок сонячної фізики. Проблема ускладнюється тим, що нейтрино вкрай слабко взаємодіє з речовиною, і створення нейтринного детектора, який здатний досить точно виміряти потік нейтрино навіть такої потужності, як іде від Сонця — технічно складна та дорога задача (див. нейтринна астрономія).

Пропонувалося два головних шляхи вирішення проблеми сонячних нейтрино. По-перше, можна було модифікувати модель Сонця таким чином, щоб зменшити передбачувану термоядерну активність (а, значить, і температуру) в його ядрі і, отже, потік випромінюваних Сонцем нейтрино. По-друге, можна було припустити, що частина електронних нейтрино, випромінюваних ядром Сонця, під час руху до Землі перетворюється на нереєстровані звичайними детекторами нейтрино інших поколінь (мюонні та тау-нейтрино)[42]. Сьогодні зрозуміло, що правильним, швидше за все, є другий шлях.

Для того, щоб відбувалося перетворення одного виду нейтрино в інший — тобто відбувалися так звані осциляції нейтрино — нейтрино повинно мати відмінну від нуля масу. Останнім часом встановлено, що це справді так[43]. 2001 року в нейтринній обсерваторії в Садбері були безпосередньо зареєстровані сонячні нейтрино всіх трьох поколінь, і було доведено, що їх повний потік узгоджується зі стандартною сонячною моделлю. До того ж лише близько третини нейтрино, що долітають до Землі виявились електронними. Ця кількість узгоджується з теорією, яка передбачає перетворення електронних нейтрино на нейтрино іншого покоління як у вакуумі (власне «осциляції нейтрино»), так і в сонячній матерії («ефект Міхєєва — Смирнова — Вольфенштейна»). Таким чином, проблему сонячних нейтрино, мабуть, вирішено.

Сонце у світовій культурі

Сонце в релігії та міфології

Протягом всієї історії людської цивілізації в багатьох культурах Сонце було об'єктом поклоніння. Культ Сонця існував у Стародавньому Єгипті, де сонячним божеством був Ра[44]. У греків богом Сонця був Геліос[45], який, за переказами, щодня проїжджав небом на своїй колісниці. У слов'янській міфології було два сонячних божества Хорс (власне уособлене сонце) і Дажбог. Річний святково-ритуальний цикл слов'ян, як і інших народів, був тісно пов'язаний з річним сонячним циклом, і ключові його моменти (сонцестояння) уособлювалися такими персонажами, як Коляда (Овсень) і Купала.

У більшості народів сонячне божество було чоловічої статі (наприклад, в англійській мові стосовно до Сонця використовується особовий займенник «he» — «він»), але в скандинавській міфології Сонце (Суль) — жіноче божество.

У Східній Азії, зокрема, у В'єтнамі Сонце позначається символом 日 (китайський піньінь rì), хоча є також інший символ — 太阳 (тай ян). У цих питомих В'єтнамських словах, слова nhật і thái dương вказують на те, що в Східній Азії Місяць і Сонце вважалися двома протилежностями інь і ян. Як в'єтнамці, так і китайці в давнину вважали їх двома первинними природними силами, причому Місяць пов'язували з інь, а Сонце — з ян[46].

Сонце у мовах світу

У багатьох індоєвропейських мовах Сонце позначається словом, що має корінь sol. Так, слово sol означає «Сонце» латинською мовою і в сучасних португальській, іспанській, ісландській, данській, норвезькій, шведській, каталонській та галісійській мовах. В англійській мові слово Sol також іноді використовується для позначення Сонця (переважно в науковому контексті), проте головним значенням цього слова є ім'я римського бога[47][48]. Перською мовою sol означає «сонячний рік». Від цього ж кореня утворене давньоруське слово сълньце, сучасне українське сонце, а також відповідні слова в багатьох інших слов'янських мовах.

На честь Сонця названо грошову одиницю держави Перу (новий соль), яка раніше називалася інті (так називався бог сонця в інків, який займав ключове місце в їхній астрономії та міфології), що в перекладі з мови кечуа означає сонце.

Сонце у малярстві

Цікаві факти

  • Сонце містить у собі 99,87 % маси усієї Сонячної системи.
  • Середня густина Сонця становить всього 1,4 г/см³, тобто дорівнює густині води Мертвого моря.
  • Кожну секунду Сонце випромінює в 100 000 разів більше енергії, ніж людство виробило за всю свою історію.
  • Питома (на одиницю маси) енерговитрата Сонця — всього 2×10-4 Вт/кг, тобто приблизно така ж, як у купи гнилого листя.
  • 8 квітня 1947 року на поверхні південної півкулі Сонця було зафіксовано найбільше скупчення сонячних плям за весь час спостережень. Його довжина становила 300 000 км, а ширина — 145 000 км. Воно було приблизно в 36 разів більше за площу поверхні Землі і його можна було легко розгледіти неозброєним оком під час заходу Сонця.
  • Кількість сонячних плям та інтенсивність випромінювання Сонця корелюють між собою. Цікаво те, що сонячна стала зазвичай на кілька десятих відсотка вища, коли кількість сонячних плям найбільша.

Див. також

Примітки

  1. Williams, D. R. (1 липня 2013). Sun Fact Sheet. NASA. Процитовано 12 серпня 2013.
  2. Asplund, M.; Grevesse, N.; Sauval, A. J. (2006). The new solar abundances - Part I: the observations. Communications in Asteroseismology 147: 76–79. Bibcode:2006CoAst.147...76A. doi:10.1553/cia147s76.
  3. Eclipse 99: Frequently Asked Questions. NASA. Архів оригіналу за 27 травня 2010. Процитовано 24 жовтня 2010.
  4. Hinshaw, G.; et al. (2009). Five-year Wilkinson Microwave Anisotropy Probe observations: data processing, sky maps, and basic results. The Astrophysical Journal Supplement Series 180 (2): 225–245. Bibcode:2009ApJS..180..225H. arXiv:0803.0732. doi:10.1088/0067-0049/180/2/225.
  5. Emilio, M.; Kuhn, J. R.; Bush, R. I.; Scholl, I. F. (2012). Measuring the Solar Radius from Space during the 2003 and 2006 Mercury Transits. The Astrophysical Journal 750 (2): 135. Bibcode:2012ApJ...750..135E. arXiv:1203.4898. doi:10.1088/0004-637X/750/2/135.
  6. Solar System Exploration: Planets: Sun: Facts & Figures. NASA. Архів оригіналу за 2 січня 2008. Процитовано 14 вересня 2014.
  7. Ko, M. (1999). Density of the Sun. У Elert, G. The Physics Factbook.
  8. Bonanno, A.; Schlattl, H.; Paternò, L. (2008). The age of the Sun and the relativistic corrections in the EOS. Astronomy and Astrophysics 390 (3): 1115–1118. Bibcode:2002A&A...390.1115B. arXiv:astro-ph/0204331. doi:10.1051/0004-6361:20020749.
  9. The Absolute Chronology and Thermal Processing of Solids in the Solar Protoplanetary Disk. Science 338 (6107). 2 листопада 2012. с. 651–655. doi:10.1126/science.1226919. Процитовано 17 березня 2014.
  10. Seidelmann, P. K.; et al. (2000). Report Of The IAU/IAG Working Group On Cartographic Coordinates And Rotational Elements Of The Planets And Satellites: 2000. Архів оригіналу за 10 серпня 2011. Процитовано 22 березня 2006.
  11. The Sun's Vital Statistics. Stanford Solar Center. Процитовано 29 липня 2008. Citing Eddy, J. (1979). A New Sun: The Solar Results From Skylab. NASA. с. 37. NASA SP-402.
  12. How Round is the Sun?. NASA. 2 жовтня 2008. Процитовано 7 березня 2011.
  13. Woolfson, M. (2000). The origin and evolution of the solar system. Astronomy & Geophysics 41 (1): 12. Bibcode:2000A&G....41a..12W. doi:10.1046/j.1468-4004.2000.00012.x.
  14. Simon, A. (2001). The Real Science Behind the X-Files : Microbes, meteorites, and mutants. Simon & Schuster. с. 25–27. ISBN 0-684-85618-2.
  15. Phillips, K. J. H. (1995). Guide to the Sun. Cambridge University Press. с. 47–53. ISBN 978-0-521-39788-9.
  16. Новые данные о радиусе Солнца
  17. Бернштейн П. От Солнца до Земли // Квант. М. : Наука, 1984.   6. — С. 12—18. ISSN 0130-2221.
  18. Группы солнечных пятен // Интерактивная база данных по солнечной активности в системе Пулковского «Каталога солнечной деятельности».
  19. Sidebar: «Solar Constant» is an Oxymoron. Архів оригіналу за 23 березня 2010. Процитовано 9 жовтня 2013.
  20. Statistics of BY Draconis variables[недоступне посилання з листопадаа 2019]
  21. Studies of Spots & Plages in by Draconis-Type Variable Stars
  22. Arnold I. Boothroyd and I.-Juliana Sackmann (1999 January 1; Received 1997 March 3, accepted for publication 1998 August 6). The CNO Isotopes: Deep Circulation in Red Giants and First and Second Dredge-up IOPscience. The Astrophysical Journal (1). doi:10.1086/306546. Процитовано 1.10.2014.(англ.)
  23. K.-P. Schröder and Robert Connon Smith (In original form 2007 September 25; Received 2007 December 14; Accepted 2008 January 23; First published online May 1, 2008). Distant future of the Sun and Earth revisited. MNRAS 386 (1): 155–163. doi:10.1111/j.1365-2966.2008.13022.x. Процитовано 1.10.2014.(англ.)
  24. людина виділяє 285 Ккал тепла на добу (1192 кДж/добу) на об'єм близько 0,075 м³
  25. The Solar Interior(англ.)
  26. Tobias, S. M. (2005). The solar tachocline: Formation, stability and its role in the solar dynamo. У A. M. Soward et al.. Fluid Dynamics and Dynamos in Astrophysics and Geophysics. CRC Press. с. 193–235. ISBN 978-0-8493-3355-2.
  27. The Solar Interior. NASA. Архів оригіналу за 22 червня 2013. Процитовано 16 березня 2012.
  28. Rashba, T. I.; Semikoz, V. B.; Valle, J. W. F. (2006). Radiative zone solar magnetic fields and g modes. Monthly Notices of the Royal Astronomical Society 370: 845—850.
  29. стаття на compulenta.computerra.ru. Архів оригіналу за 25 вересня 2013. Процитовано 22 вересня 2013.
  30. Gillman, M.; Erenler, H. (2008). The galactic cycle of extinction. International Journal of Astrobiology 7 (1): 17–26. Bibcode:2008IJAsB...7...17G. doi:10.1017/S1473550408004047.
  31. Космические эксперименты ФИАН
  32. Alexander Piel. {{{Заголовок}}}. — P. 7. — ISBN 9783642104909.
  33. Завидонов И. В.  // Историко-астрономические исследования. — Наука, 2002. Вип. XXVII. С. 201—222.
  34. Алексей Левин. Ветреное светило таит немало загадок Архівовано 5 лютого 2008 у Wayback Machine.
  35. Wade, M. (2008). Pioneer 6-7-8-9-E. Encyclopedia Astronautica. Архів оригіналу за 22 квітня 2006. Процитовано 22 березня 2006.
  36. Solar System Exploration: Missions: By Target: Our Solar System: Past: Pioneer 9. NASA. Архів оригіналу за 2 квітня 2012. Процитовано 30 жовтня 2010. «NASA maintained contact with Pioneer 9 until May 1983»
  37. STEREO Spacecraft & Instruments. NASA Missions. 8 March 2006. Процитовано 30 травня 2006.
  38. Howard R. A., Moses J. D., Socker D. G., Dere K. P., Cook J. W. (2002). Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Advances in Space Research 29 (12): 2017–2026. Bibcode:2008SSRv..136...67H. doi:10.1007/s11214-008-9341-4.
  39. 2019 року NASA відправить перший зонд до Сонця. Tokar.ua (uk-UA). 18 липня 2018. Процитовано 28 вересня 2018.
  40. The Green Flash. BBC. Архів оригіналу за 16 грудня 2008. Процитовано 10 серпня 2008.
  41. Haxton, W. C. (1995). The Solar Neutrino Problem (PDF). Annual Review of Astronomy and Astrophysics 33: 459—504.
  42. Schlattl, Helmut. (2001). Three-flavor oscillation solutions for the solar neutrino problem. Physical Review D 64 (1).
  43. Re (Ra). Ancient Egypt: The Mythology. Архів оригіналу за 22 січня 2012. Процитовано 28 серпня 2010.
  44. Мифы народов мира. М., 1991—92. В 2 т. Т. 1. С. 271. Любкер Ф. Реальный словарь классических древностей. М., 2001. В 3 т. Т. 2. С. 99. Псевдо-Аполлодор. Мифологическая библиотека I 2, 2 далее
  45. Osgood, Charles E. From Yang and Yin to and or but. — Language 49.2 (1973): 380—412.
  46. William Little (ed.) Oxford Universal Dictionary, 1955.
  47. Sol, Merriam-Webster online, accessed July 19, 2009.

Посилання і джерела

Ця стаття належить до добрих статей української Вікіпедії.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.