Життя
Життя́ (Biota[1]) — це явище, що є сукупністю фундаментальних загальнобіологічних ознак (метаболізму, гомеостазу, росту, розвитку, відповіді на подразнення, розмноження, еволюції тощо), які характеризують живих істот, відрізняючи їх від неживих об'єктів. Життя визначається як форма існування матерії, найхарактернішими рисами якої є обмін речовин, самооновлення та самовідтворення[2]. Вивченням властивостей життя займається наука біологія, яка покликана з'ясувати фундаментальні закони його існування та безперервності у часі.
? Життя (Biota) | ||
---|---|---|
Різні форми прояву життя | ||
Біологічна класифікація | ||
| ||
Основні групи живих організмів | ||
| ||
Посилання | ||
| ||
Життя — це форма існування дієвих інструкцій з організації матерії. Якщо інструкції виконуються — тоді цей процес називається життєдіяльністю. Життю не обов'язково притаманний метаболізм, гомеостаз, ріст, розвиток, відповідь на подразнення, розмноження, еволюція на конкретному етапі існування. Заморожені організми, віруси поза клітинами, насіння до пророщення не мають цих властивостей, але обов'язково мають інструкції до виконання при сприятливих умовах.
Життя на Землі з'явилось приблизно 3,8 млрд років тому[3]. Існує кілька гіпотез виникнення земного життя, з яких найбільш розповсюдженою є гіпотеза самозародження. Припускається, що перші організми були побудовані виключно на базі РНК — гіпотеза світу РНК[4], — без участі ДНК та білків, які розвинулись пізніше, у процесі еволюції.
Єдина відома на сьогодні форма життя базується на полімерах чотиривалентного карбону, де функціональну частину становлять білки, структурну та енергетичну — вуглеводи та жири, відтворювальну — нуклеїнові кислоти[5].
Живі організми разом із середовищем їх існування утворюють складні системи — екосистеми[6], які у планетарному масштабі об'єднуються у біосферу із широтною та висотною зональностями. На сьогоднішній день відомою є лише одна біосфера — земна. Передбачається можливість існування біосфер на інших планетах.
Термін життя у різних значеннях вживається у філософії та релігії, які, зокрема, стосуються понять буття, свідомості, сенсу життя, концепції Бога або Богів, душі, життя після смерті та інше.
Проблеми визначення
На сьогоднішній день не існує єдиноприйнятого визначення поняття Життя. Трактування поняття життя дуже різниться у природничих та математичних науках, у філософії та релігіях. Уявлення про саме життя, його походження та розвиток настільки відмінні у різних напрямках суспільної свідомості, що часто призводять до конфліктних ситуацій. Сьогодні триває полеміка між креаціоністами та еволюціоністами, суть якої полягає у суперечностях між баченнями походження, розвитку та сутності життя.
Природничі визначення
Різні природничі науки дають різні тлумачення Життя, однак, більшість сходиться на кількох фундаментальних критеріях живої матерії, які окреслюють життя як процес[7].
Життя — це функція негативної ентропії[8][9]. Життя є явищем, яке властиве відкритим або безперервним системам, що здатні самочинно знижувати власну внутрішню ентропію за рахунок речовин або вільної енергії, отриманих з довкілля і згодом виділеної у вигляді продуктів життєдіяльності. З точки зору біофізики живий об'єкт відрізняється від неживого тим, що здатен обмінюватись теплом і матерією із довкіллям. Завдяки цьому усуваються суперечності, які вникають при описі живої системи за допомогою другого закону термодинаміки — ентропія ізольованих систем повинна зростати, проте, зростання або сталість ентропії притаманне лише адіабатичним системам, які не обмінюються теплом із середовищем, а живі системи є відкритими системами.
Життя — це переважання процесів синтезу над процесами розпаду, пул енергоспоживаючих процесів зміни речовини і інших об'єктів фізичної хімії, в яких помітні два цикли (у часі): цикл регенерації необхідних речовин; цикл регенерації механізму регенерації речовини.
Життя як хімічна хвиля — багатовимірна каталітична циклічна хімічна реакція. У кожен момент часу її існування, званий часом життя, в кожному окремому ланцюзі реакції на будь-якому рівні масштабу розгляду (від молекул до класів живих організмів) присутні три матеріальні елементи: ресурс, каталізатор та результат. Елементи взаємодіють один з одним в певних тимчасових фазах. Коливанням є концентрації речовин. Кожен результат є ресурсом для наступної ланки взаємодії — хвилі концентрацій речовин.
Життя виникло, коли в процесі спонтанної хімічної ланцюгової каталітичної реакції однієї з ниток кінцевий результат виявився тотожним одному з власних ресурсів (ресурсом одного з попередніх поколінь). Всі циклічні хімічні реакції протікають без втрат інформації нескінченно довго — внаслідок чого хімічне життя генотипу вважається нескінченним. У комплексному потоці хімічних хвиль має місце ентропійне загасання, що приводить до необхідності смерті для окремих циклів хвилі (окремі молекули, клітини, організми).
Життя — особлива форма існування матерії, яка виникла на певному етапі її існування й характеризується процесами метаболізму[10]. Життя є біологічним явищем, якому притаманні: внутрішня структурованість, власний метаболізм, здатність до розмноження, спадковість та підтримка внутрішнього гомеостазу. Вивченням властивостей життя займається наука біологія, яка покликана з'ясувати фундаментальні закони його існування та безперервності у часі. Зокрема життя визначають як безперервний процес обміну матерією та енергією між організмом та довкіллям, і здатністю його (організму) до самовідтворення. Часто-густо, життя визначають як існування білкових тіл, однак, сутність виключно білкового життя була відкинута після відкриття неклітинних організмів, складених лише із єдиної молекули нуклеїнової кислоти, а також висунення Гіпотези світу РНК для пояснення виникнення самого життя.
Технічні визначення
- Життя — це інформаційна структура з пам'яттю, що використовує власну внутрішню мову — систему сигналів, властивостей і методів, не пов'язана з конкретним матеріальним носієм і здатна без втрат інформації переміщуватися від одного матеріального носія до іншого, репродукуючись без втрат.
- Життя біологічне — це комплексний процес, ключовою частиною якого є реакція матричного синтезу (синтез білка).
Філософські визначення
Бачення поняття «Життя» у філософії є дуже різним, що залежить від різних течій та напрямків цієї науки. Часто-густо, філософські концепції життя діаметрально відрізняються одна від іншої, ототожнюючи його із ідеальним існуванням, що має божественний початок; наділяючи рисами живого і неживі об'єкти; спрощуючи сутність явища життя до механічних моделей; обмежуючи рамками: органічне походить лише від життя; наділяючи усе живе розумом та здатністю до мислення тощо.
Життя у повній мірі може бути виміряне та пояснене з точки зору руху матерії та фізичних законів. Механіцисти спрощували сутність життя як явища, а здебільшого розглядали окремі живі організми як механічні конструкції.
Живими можуть вважатися лише органічні форми існування матерії, які якісно відрізняються від неживої природи. Все живе характеризується цілеспрямованістю формування своїх же життєвих сил (гомеостаз та розмноження). Віталізм у багатьох аспектах перегукується із теологічними уявленнями про життя та живу природу.
Віталізм спирається на ідею фундаментального поділу органічних і неорганічних матеріалів, і переконання, що органічний матеріал може бути отриманий лише із живих істот. Цей постулат був спростований у 1828 році, коли Фрідріх Велер синтезував сечовину з неорганічних речовин. Це так званий синтез Велера, який вважається відправною точкою сучасної органічної хімії.
Поняття життя є синтезом механіцизму та віталізму. З одного боку, життя можна описати з позицій фізичних та хімічних вимірювань, а з іншого — живі істоти мають властивості, які непритаманні неживим об'єктам. Конкретні властивості життя виникають від складності самого живого організму і закладеної у ньому програми (генетичні особливості).
Вбачає прояви життя в у неживій матерії. Античні гілозоїсти наділяли матеріальний всесвіт життям і свідомістю, населяючи їх духами та уособлюючи природу. Сучасні гілозоїсти вважають, що усі процеси у живій та неживій природі відбуваються за єдиним шаблоном, незалежно чи то будь-яка дискретна зміна, чи то підтримання тенденції. Геккель стверджував про існування єдності органічної та неорганічної природи і визначення їхніх властивостей фундаментальними законами буття. Представники аргентино-німецької нейробіологічної традиції наполягали, що будь-яка частина природи здатна поводити себе логічно та економічно, що є надрозумовою властивістю світу. Архітектор Крістофер Олександр висунув теорію Живого Всесвіту, де життя розглядається як широко розповсюджена структура, яка охоплює також і усі неживі об'єкти, зокрема будівлі.
Наділяє неживу природу не тільки рисами життя, а й свідомістю, уособлюючи її. Панпсихізм має декотрі риси схожості із анімізмом та гілозоїзмом, які лягли у його основу. Загалом панпсихісти стверджують, що Земля і Всесвіт є єдиним живим організмом, наділеним свідомістю, розумом і здатністю до мислення. Природа існує у вигляді безлічі окремих думок, які об'єднані в єдиний задум. Деякі течії панпсихізму вказують на різний ступінь розвитку свідомості у різних частин природи, відповідно не усі живі чи неживі об'єкти здатні до самоусвідомлення.
Релігійні визначення
В основі практично усіх релігій закладене твердження про таїнство творення живого із неживого волею безсмертного Бога або Богів. Життя — це чудова властивість матерії, що дається і відбирається Богом. Розрізняють кінцеве (у часі) життя тіла і нескінченне життя душі. Живий організм — це такий, в тілі якого існує душа. У деяких релігіях існує уявлення реінкарнації — переселення душ або їх нескінченної мандрівки від одного індивіда до іншого, необов'язково людини. Для багатьох релігій також притаманна віра у загробне життя (рай, пекло, чистилище тощо). Більшість релігій стверджує про існування духовних істот: духів, демонів, ангелів тощо.
Відповідно до юдаїзму, християнства та ісламу життя є творінням Єдиного Бога, який є володарем життя і смерті. У Книзі Буття стверджується, що все живе було створене Богом на початку часу, між третім і шостим днями творіння. У Корані (іслам), на відміну від Біблії (християнство), немає детального опису акту творіння. Основною заповіддю божою є «не вбивай».
З-поміж основних вірувань індуїзму буддизму, джайнізму, сикхізму та інших уособленням життя є самсара — нескінченний цикл народжень, смертей та реінкарнацій. У дхармічних релігійно-філософських системах — це уявлення про плинність усього живого, процес переходу однієї тілесної оболонки в іншу, ланцюг страждань у земному житті, кругообіг народження і смерті, трансміграція душі. У кругообізі самсари живі істоти, еволюціонують або регресують, проходять через різні форми життя: від мікробів, комах, рослин і навіть мінералів, до найвищої позиції — діви-творця Всесвіту Брахми. Становище, в якому опинилась та чи інша жива істота в ієрархії життя, залежить від якостей, набутих у минулих втіленнях, що є плодами карми, котрі істота змушена пожинати.
Відповідно до дхармічних віровчень Всесвіт є вічним та циклічним. У їхніх священних текстах описано виникнення Землі, людини та інших живих істот, котрі постійно проходять цикли створення та знищення (пралая).
Інші розуміння
Існує низка уявлень про явище життя, які заперечують усі ніші його бачення, або ж ґрунтуються на синтезі часто-густо діаметрально протилежних теорій та вчень. Окрім того термін «Життя» вживається у символічних та переносних значеннях.
Символізм
Життя часто ототожниться із біографією людини[10]. Воно є часом існування людини з моменту народження до моменту смерті. Іноді життя визначають як підсумок певних діянь та переживань окремого індивіда за будь-який проміжок часу — це є своєрідний життєпис людини, який називають Curriculum Vitae. Життя також може вживатися і для позначення існування та діяльності людського суспільства — реальна дійсність в усіх або окремих її проявах[10].
Переносні значення
У переносному значенні життям позначають різні процеси або явища, зокрема: термін або час існування будь-чого чи будь-кого; енергію, внутрішню бадьорість, повноту духовних та моральних сил; все, що є найдорожчим для людини, джерело радості чи щастя; існування без нужди і турбот та інші[10].
Самоусвідомлення
Життя є властивістю індивіда, який усвідомлює себе — «Я живу», «Я існую», «Я є», «це Я» тощо. Самоусвідомлення є важливою рисою розумного життя, оскільки усвідомлення самого себе дає суб'єктивну можливість до пізнання довколишнього світу, буття і життя, як явища, відношення себе до свого місця і ролі у загальній світобудові, а також відношення світу до себе самого. Усвідомлення себе є рефлексією самосвідомості, що спричиняється до пізнання свого внутрішнього, психологічного світу, а відповідно й до самопізнання. Усвідомлюючи себе, індивід зберігає своє «Я» в часі та просторі — узагальнює та об'єднує досвід і міркування, які були у минулому, є на даний момент часу і будуть у майбутньому[11].
У багатьох релігіях та віруваннях, мультфільмах усі живі істоти, а також об'єкти неживої природи, здатні усвідомлювати себе.
Самоусвідомлення притаманне низці видів тварин, які населяють Землю, про що свідчить тест із дзеркалом. До таких тварин відносять людей, людиноподібних мавп, макак резус, пляшконосих дельфінів, косаток, слонів та сороку звичайну.[12][13][14][15]. Інші тварини, наприклад, собаки, кішки, а також маленькі людські діти, не здатні упізнавати себе у дзеркалі[16][17]. Вік, коли людські діти упізнають своє відображення наступає у 18 місяців — це, так звана, «дзеркальна стадія» розвитку людини[18].
Вчення Живого Вогню
Культ Живого Вогню був наявний у зороастризмі, пізніше вчення «Живого Вогню» було закладено грецьким філософом Гераклітом Ефеським (бл. 520 до н. е.-460 до н. е.). Він вважав Вогонь символом життя — процесу перманентного чергування народження і смерті. В уявленні Геракліта існує тотожність світового порядку, для всіх живих істот, немає Бога, а світ і його речі ніхто не створив, він існував завжди, є і буде вічно живим вогнем.
Гіпотеза Геї
Гіпотеза Геї розглядає Землю як живий організм[19]. Це дискусійна та суперечлива екологічна гіпотеза, яка розглядає біосферу і геологічні компоненти планети (атмосфера, гідросфера та літосфера), що тісно інтегровані у формі складної системи взаємодій. Такі взаємодії підтримують кліматичні та біогеохімічні умови на Землі на бажаному рівні гомеостазу. Гіпотеза запропонована Джеймсом Лавлоком, як гіпотеза зворотного зв'язку землі[20].
Ноосфера
Ноосфера розглядається як окрема жива оболонка Землі наповнена розумом. В оригінальній теорії Володимира Вернадського, ноосфера є третім етапом, у послідовності фаз розвитку Землі, після геосфери (неживої матерії) і біосфери (біологічного життя). Так само, як виникнення життя принципово перетворило геосферу, так і поява людського пізнання принципово змінює біосферу. Серед складових частин ноосфери виділяють антропосферу (сукупність людей як організмів), техносферу (сукупність штучних об'єктів, створених людиною, та природних об'єктів, змінених в результаті діяльності людства) та соціосферу (сукупність соціальних факторів, характерних для даного етапу розвитку суспільства і його взаємодії з природою).
Ознаки живої матерії
Усі живі організми характеризуються низкою ключових параметрів, за якими їх відрізняють від неживих об'єктів. Зокрема, сюди приналежні такі критерії живої матерії:
- Внутрішня структурованість. Живим організмам притаманна упорядкованість внутрішніх структур та процесів. Структурованість будови проявляється у наявності окресленої клітинної (у клітинних форм життя) будови та її внутрішніх органел і компартментів з розподілом між ними упорядкованих, почергових метаболічних шляхів і циклів. У неклітинних нуклеїнових форм живих організмів структурованість проявляється у впорядкованості комплексів нуклеїнових кислот (віроїди, транспозони) з білками та цукрами (віруси). У білкових неклітинних форм життя — четвертинною структурою білків (пріони).
- Метаболізм — це комплекс безперервних біохімічних перетворень — біологічного окислення (аеробне, анаеробне) органічних речовин, з вивільненням енергії, котра використовується для підтримання процесів життєдіяльності та побудови організму.
- Гомеостаз — це властивість живого організму підтримувати стабільність внутрішньої структурованості та процесів метаболізму.
- Розмноження — це біологічний процес, за допомогою якого утворюються нові живі організми.
- Спадковість — це здатність живої матерії передавати від батьків до нащадків основні ознаки зовнішньої та внутрішньої будови, біохімічних особливостей і фізіологічних функцій.
- Подразливість — це здатність живого організму переходити зі стану фізіологічного спокою у діяльний стан у відповідь на дію будь-якої сили, яку називають подразником, процес дії цієї сили — подразненням, а відповідь на нього — біологічною реакцією.
- Адаптація — це індивідуальна або групова властивість живих організмів, що проявляється у вигляді реакції у поведінці організму, перебудові фізіологічних процесів або набутті нових анатомічних структур, які розвинулись за певний проміжок часу (недовгочасний або у процесі еволюції) таким чином, що підвищили виживання та репродуктивний успіх конкретного організму або виду.
- Еволюція — це групова властивість живих організмів до їхнього історичного безупинного розвитку, що проявляється у якісних та кількісних змінах генофонду популяцій, набутті нових адаптацій, утворенням та вимиранням видів, перетворенням екосистем та біосфери.
Рівні організації живої матерії
Рівень організації живої матерії — це сукупність кількісних та якісних параметрів певної біологічної системи (клітина, організм, популяція і т. д.), що окреслюють умови та межі її існування. Сукупність рівнів організації утворює ієрархічну «драбину» живого. Об'єднання рівнів у ієрархії живого відбувається за принципом емерджентності — об'єднання цілісних одиниць нижчого рівня ієрархії характеризується появою нових якісних параметрів системи вищого рівня організації (клітини об'єднуються у тканини; організми одного виду утворюють популяцію тощо).
Виділяють такі основні рівні організації живої матерії:
Молекулярно-генетичний рівень
Молекулярно-генетичний рівень живого — це сукупність інформаційно-каталітичних взаємодій біополімерів, які забезпечують збереження, обробку та передачу спадкової інформації у часі від материнського до дочірнього носіїв. Основним носієм спадкової інформації земних живих істот є ДНК, як виняток віроїди та РНК-вмісні віруси, у яких цю роль виконує РНК. Незрозумілою залишається схема передачі спадкової інформації лише у пріонів, які являють собою білок, і не містять нуклеїнових кислот.
Молекулярна організація живих систем являє собою цілу низку безперервних біохімічних циклів, які спрямовані на синтез енергії у вигляді АТФ з подальшою її витратою на реплікацію ДНК (РНК).
Клітинний рівень
Клітина є якісно новим рівнем організації живого, який об'єднує усі біохімічні та генетичні цикли в єдину систему, розмежовану із довкіллям. Ця система є базовою структурно-функціональною одиницею живої матерії (виняток — неклітинні форми), яка здатна самостійно відтворюватися.
Клітини усіх живих організмів поділяються на евкаріотичні — ті, що містять морфологічно відокремлене ядро із генетичною інформацією, та прокаріотичні — ті, які не мають морфологічно відокремленого ядра.
Тканинний рівень
Клітини об'єднуються у тканини, де виконують спільні функції. Клітини у тканині втрачають індивідуальні риси, що відбувається у процесі диференціації і призводить до їх спеціалізації на виконанні якоїсь однієї або небагатьох суворо визначених функцій (нейрони — проводять електричні імпульси, міоцити — скорочуються, еритроцити — транспортують кисень тощо). Для клітин тканин властива групова поведінка, яка проявляється у однакових отриманні, обробці та відповіді на сигнали із зовнішнього середовища. Клітини тканини комунікують між собою за посередництва медіаторів і плазмодесм.
Організмовий рівень
Організм — це елементарна біологічна система існування індивідуальних особин, незалежно від форми їх організації (неклітинні, одноклітинні, багатоклітинні). Одна із основних властивостей життя — розмноження, — можливе лише на організмовому рівні організації живої матерії. Життя проявляється виключно у реальному існуванні окремих організмів.
Організмовий рівень організації життя може збігатися із будь-яким із «доорганізмових» (організми вірусів існують на молекулярно-генетичному рівні; археїв — на клітинному; кишковопорожнинних — на тканинному тощо).
Для більшості багатоклітинних тварин, виключаючи губок, кишковопорожнинних та реброплавів, організмовий рівень організації передбачає об'єднання тканин у органи (нервова тканина формує нервові волокна та мозок), окремі органи — у системи органів (головний, спинний мозки, нерви утворюють нервову систему), системи органів — у організм (нервова, травна, кровоносна, дихальна, видільна та ін. утворюють організм).
Популяційно-видовий рівень
Популяційно-видовий рівень організації живої матерії базується на поняттях популяції та виду. Популяція — це будь-яка сукупність генетично і морфологічно близьких особин, приналежних до одного виду, які заселяють визначену територію, вільно схрещуються між собою та дають здатне до розмноження потомство. Популяція є елементарною одиницею еволюції. Вид — це сукупність усіх популяцій генетично і морфологічно близьких особин, які розселені в межах певного ареалу, і між якими існують потоки генів.
Популяційно-видовий рівень організації живої матерії характеризується вільним обміном спадковою інформацією між подібними індивідуальними організмами. Це єдиний рівень взаємодії між організмами, який забезпечує вертикальний переніс генів — від батьків до дітей.
Популяційно-видовий рівень організації живої матерії забезпечує елементарні процеси еволюції, зокрема мікроеволюції.
Екосистемний рівень
Популяції різних видів, які співіснують на одній території, об'єднуються на основі гетеротипових взаємодій, утворюючи екосистемний рівень організації живої матерії. До таких взаємодій належать: міжвидова конкуренція, алелопатія, мутуалізм (симбіоз), прото- та кооперація, хижацтво, паразитизм та інші. Окрім міжвидових стосунків, угруповання популяцій взаємодіє із середовищем, перебуваючи під впливом абіотичних екологічних факторів (інсоляція, температура, зволоження та ін.), і змінює його відповідно до своїх потреб (ґрунтоутворення, формування мікроклімату тощо).
Екосистемний рівень організації побудований на функціональних блоках продуцентів, консументів та редуцентів, які забезпечують постійні потоки енергії та матерії через трофічні ланцюги та мережі. Продуценти (фото- та хемосинтетики), використовуючи абіотичні джерела енергії (світло, хімічні зв'язки), утворюють первинну біомасу, яка споживається консументами різних порядків. Відмерлі продуценти та консументи, їхні частини, а також продукти їхньої життєдіяльності розкладаються редуцентами до простих хімічних сполук (H2O, CO2, NH3 тощо).
Елементарною одиницею екосистемного рівня організації є консорція, у центрі якої знаходиться вид-детермінант, з пов'язаними із ним видами-консортами приналежними до концентрів різних порядків[21][22].
Екосистемний рівень організації живої матерії є рушієм коеволюційних процесів, ґрунтованих на міжвидових взаємодіях.
Біосферний рівень
Біосферний рівень організації живої матерії — це сукупність усіх екосистем планети, які пов'язані між собою глобальними геохімічними циклами, океанічними та атмосферними циркуляціями.
Для цього рівня організації живого характерна агрегація однотипних екосистем, утворюючи біоми — природні зони. Біоми чітко розподілені на поверхні планети у глобальному кліматичному градієнті.
Розрізняють вісім основних суходільних біомів[23]: тундра, тайга, листопадні ліси помірного клімату, вічнозелені широколистяні субтропічні ліси, степи, пустелі, савани та тропічні дощові ліси. Окрім них, вирізняють ще шість проміжних біомів: полярні льоди, високогір'я, чапарель, вічнозелені теплі вологі ліси, тропічні мусонні ліси та напівпустелі.
У океанах виділяють три основні середовища[23]: нерична, пелагіальна та бентична зони. За освітленістю — два середовища: фотична й афотична зони.
Структурно-функціональна організація живих організмів
Збереження генетичної інформації
В усіх клітинних організмів генетична інформація зберігається у вигляді лінійної або кільцевої дволанцюгової антипаралельної лівозакрученої спіральної молекули ДНК. У евкаріот (за поодинокими винятками) та декотрих прокаріот ДНК з'язана із білками, переважно гістонами (евкаріоти) або гістоноподібними білками (прокаріоти), які стабілізують її структуру і захищають від гідролізації та ферментів нуклеаз. У прокаріотів ДНК являє собою одну кільцеву хромосому-плазміду.
У неклітинних організмів генетична інформація зберігається у вигляді одно- або дволанцюгових, лінійних, замкнених або кільцевих спіральних молекул ДНК чи РНК. Їх збереження відбувається багатьма різноманітними способами: від утворення комплексів із білками до вмонтовування у геном клітини-господаря.
Реалізація генетичної інформації
Основним процесом реалізації генетичної інформації (у клітинних організмів) є власний біосинтез білка, що забезпечує структурну стабільність клітини та гомеостаз її внутрішнього середовища. Реалізація генетичної інформації включає такі стадії: транскрипцію — «перепис» інформації із матриці ДНК на матричну РНК (мРНК); процесинг — «дозрівання» матричної РНК шляхом вирізання інтронів та інших змін; трансляцію — синтез білків на мРНК.
Під час транскрипції відбувається зчитування генетичної інформації, зашифрованої в молекулах ДНК, і запис цієї інформації в молекули мРНК. Під час низки послідовних стадій процесингу з мРНК видаляються деякі фрагменти, непотрібні в подальших стадіях (сплайсинг), додавання регуляторних послідовностей (кеп, поліаденілування) і відбувається редагування нуклеотидних послідовностей. Після транспортування зрілої молекули мРНК з ядра до рибосом відбувається власне синтез білкових молекул шляхом приєднання окремих амінокислотних залишків до поліпептидного ланцюжка, що росте. На останній стадії посттрансляційної модифікації відбуваються зміни новосинтезованого білка шляхом приєднання до нього небілкових молекул та ковалентними модифікаціями його амінокислот.
У неклітинних організмів (виняток пріони) реалізація генетичної інформації відбувається шляхом використання білоксинтезуючого апарату клітини-господаря.
Також реалізацією генетичної інформації є дія некодуючих РНК — молекул РНК, які самі по собі не використовуються для синтезу білків, проте виконують інші функції, такі як захист геному від перебудови транспозонів (піРНК), регуляція активності певних генів (міРНК, мікроРНК) тощо.
Передача генетичної інформації
Передача генетичної інформації є найважливішим процесом збереження життя у часовому вимірі. Універсальним для усіх живих організмів (за винятком пріонів) є процес реплікації спадкової молекули — відтворення дочірніх молекул (ДНК або РНК) на материнській молекулі-матриці (переважно ДНК).
Реплікація ДНК
Спершу фермент топоізомераза «розкручує» спіральну молекулу ДНК з подальшим приєднанням стабілізувальних білків, які запобігають повторній спіралізації. Фермент хеліказа розриває водневі зв'язки між азотистими основами, внаслідок чого ділянка подвійної молекули ДНК розпадається на два ланцюги. До ланцюга приєднується ДНК-праймаза — фермент який розпочинає синтез ДНК — власне реплікацію. Вона синтезує РНК-праймер — послідовність нуклеотидів від якої наступний фермент — ДНК-полімераза будує новий ланцюг, використовуючи наявний як матрицю. Синтез нових ланцюгів відбувається асиметрично, тобто один з них синтезується безперервно, а інший — будується короткими фрагментами Окадзакі у протилежному напрямку від дії хелікази. Фрагменти Оказакі з'єднує між собою фермент ДНК-лігаза. Таким чином з однієї молекули ДНК утворюються дві ідентичні, які після закінчення процесу реплікації спіралізуються.
Реплікація у вірусів що мають одноланцюгову ДНК має особливості. У клітині хазяїна на такій молекулі, яку називають (+)-ланцюгом синтезується комплементарний йому (-)-ланцюг, таким чином утворюється дволанцюгова молекула ДНК. (-)-ланцюг потім слугує матрицею для синтезу нових (+)-ланцюгів, які вбудовуються у вірусні частинки. У процесі беруть участь ферменти вірусів та ферменти клітини-хазяїна.
Реплікація РНК
Реплікація РНК відбувається у організмів, геном яких кодує ця нуклеїнова кислота — це деякі типи вірусів та віроїди. Процес відбувається в клітинах хазяїна, які були інфіковані цими організмами. При цьому також синтезуються (-)-ланцюги та РНК проходить дволанцюгову стадію.
Способи розмноження
Передача генетичної інформації у клітинних організмів до нащадків відбувається трьома основними способами: вегетативним (поділ клітини навпіл, брунькування, фрагментація тіла тощо), нестатевим (спороношення, зооспороношення, конідієношення та ін.) та статевим (гаметогамія, гаметангіогамія, хологамія, автогамія, соматогамія, конюгація та ін.).
Розвиток живих організмів
Онтогенез
Онтогенез — це процес, який відбиває індивідуальний розвиток організму з моменту утворення зиготи до його смерті. В онтогенезі розрізняють кілька ключових процесів: органогенез — утворення тканин і органів; морфогенез — визначення форм тканин, органів, їх розташування відносно один іншого та загальний вигляд організму в цілому; репродукція — розмноження.
Процес онтогенезу є безперервним і пов'язаний із послідовною активацією та дезактивацією груп генів, які відповідають за розвиток організму у конкретний період його життя. У молодих організмів процеси анаболізму (синтезу) переважають над процесами катаболізму (розпаду); у зрілих організмів, які активно розмножуються, зберігається рівновага між обома проявами метаболізму; організми, що старіють, характеризуються переважанням катаболізму.
Для онтогенезу характерний процес рекапітуляції — повторення філогенезу у розвитку індивідуального організму. Вперше цей термін був запроваджений Ернстом Геккелем у 1866 році[24], як доказ справедливості теорії еволюції Чарльза Дарвіна.
Наука, яка вивчає онтогенез називається Біологією індивідуального розвитку (БІР).
Між онтогенезами тварин, рослин і грибів є суттєві відмінності. Найбільш типово індивідуальний розвиток вивчений на тваринах, у яких він є найскладнішим з-поміж усіх живих організмів на Землі.
Онтогенез тварин
(Erica lusitanica Rudolphi), верес-еріка віникова (Erica scoparia L.) та верес-еріка деревовидна (Erica arborea L.) та ін чагарники високотрав'я та різнотрав'я. Зарості сосни гірської приурочені до торф'янистих і торфових ґрунтів, на яких поширені також чорниця і мохи. Зеленовільшняки приурочені до затінених схилів або улоговин з вологими чи сирими ґрунтами. Тут трав'янистий покрив багатший. Зустрічаються тирличі, безщитники, жовтозілля тощо. Сухіші та освітлені південні схили займають зарості ялівцю сибірського. На місці вирубування субальпійських криволісь утворюються вторинні луки, які у Карпатах називаються «полонини»
•Східноафриканські субальпійські гірські криволісся поширені здебільшого у гірському масиві Рувензорі, а спорадично також у Горах Вірунґа, Горах Мітумба, Абердарських Горах та вершинах Гора Кенія, Гора Кілімаднжаро, на висотах 3000-4000 м над рівнем моря. Криволісся представлені Вересом-Ерікою деревовидною, деревовидними лобеліями (лобелія Декена (Lobelia deckenii), лобелія абердарська (Lobelia aberdarica) та ін.) та дерево-жовтозіллями (дерево-жовтозілля прильодовикове (Dendrosenecio adnivalis), дерево-жовтозілля кенійське (Dendrosenecio keniensis), дерево-жовтозілля кіліманджарське (Dendrosenecio kilimanjari) та ін.).
•Гімалайські субальпійські гірські криволісся поширені у Гімалайських та прилеглих гірських масивах Алтаю та ін., на висотах від 3000 м до 4000 м над рівнем моря. Рослинність представлена криволіссями із деревовидних рододендронів (наприклад, рододендрод кущовий (Rhododendron arboreumboreum) та ялівців.
•Південноазійські субальпійські гірські криволісся поширені у гірських системах Південно-Східної Азії на висотах 2500-3000 м над рівнем моря. На вершині г. Кінабалу, о. Борнео, криволісся представлене заростями дакридіума Ґібса (Dacrydium gibbsiae).
•Австралайзійські субальпійські гірські криволісся поширені у горах Нової Ґвінеї, Австралії, Нової Зеландії. Новоґвінейські криволісся охоплюють проміжок висот між 3000-4000 метрів, представлені чагарниками з родів рододендрон (Rhododendron), чорниця (Vaccinium), копросма (Coprosma), рапанея (Rapanea), зауравія (Saurauia) та ін.
•Південноамериканські субальпійські гірські криволісся поширені у Андах на висотах 3000-3500 м над рівнем моря і називаються субпарамо — чагарниковою зоною, що розмежовує альпійські луки — парамо і верхній лісовий пояс. Рослинність складена угрупованнями падуба (Ilex L.), змієкореня (Ageratina Spach.) та бахарису (Baccharis L.).
Пояс тропічних гірських бамбукових лісів
Пояс гірських хвойних лісів — лісові екосистеми, утворені хвойними деревними видами, поширені смугою на висоті 700—1500 м над р.м. і вище. У північній півкулі хвойний пояс складають здебільшого представники роду смерека, ялиця та сосна; у південній — араукарія.
Кліматично пояс хвойних лісів приурочений до прохолодної та помірно холодної кліматичних зон із сумою активних температур від 1000 до 1600°С та сумою опадів до 1500 мм/рік. Ґрунти кислі, часто щебнисті.
•Циркумбореальні гірські хвойні ліси Поширені у горах Євразії та Північної Америки на висотах 1000—2000 м над рівнем моря. Утворені представниками родів сосна (Pinus), смерека (Picea), ялиця (Abies) та та ін. У Карпатах пояс хвойних лісів представлений ялиною європейською, ялицею білою, зрідка трапляється сосна кедрова європейська та реліктова сосна звичайна.
•Австралайзійські гірські хвойні ліси Поширені у горах Нової Ґвінеї, Австралії, Нової Зеландії на висотах 2000-3000 метрів над морем. Представлені здебільшого подокарпусами (Podocarpus), дакрикарпусами (Dacrycarpus), дакридіумами (Dacrydium), папуакедрами (Papuacedrus), араукаріями (Araucaria), and лібокедрами (Libocedrus) та ін.
Пояс гірських листяних лісів
•Циркумбореальні гірські листяні ліси Поширені у горах північної півкулі на висотах 700—1500 м (залежно від широти), де представлені буком (Fagus).
•Австралайзійсько-Південноамериканські гірські листяні ліси Поширені у горах південної півкулі в межах антарктичної флори на висотах 900—2000 метрів над морем, де представлені лісами з південнобука (Nothofagus).
Пояс тропічних гірських хвойних лісів
Пояс тропічних гірських листяних лісів
Глибинна зональність
- Фотична океанічна зона
- Афотична океанічна зона
- Нерична океанічна зона,
- Пелаґіальна океанічна зона: Епіпелагіаль: Мезопелагіаль: Батипелагіаль: Абісопелагіаль
- Бентична океанічна зона: Літораль: Сублітораль: Батіаль: Абісаль: Гадаль
Екстремальні екосистеми
- Екосистеми гарячих глибоководних джерел
- Екосистеми холодних глибоководних метанових джерел
- Екосистеми гарячих суходільних джерел
- Екосистеми сольових роп
- Екосистеми асфальтових озер
- Екосистеми кислотних озер
Виникнення життя на Землі
Теорія самозародження Опаріна-Галдана
Гіпотеза світу РНК
Гіпотеза світу РНК передбачає, що вихідною формою живих істот на Землі були молекули РНК, які в результаті біохімічної еволюції розвинулись у ДНК та білки, давши початок білковому життю сучасного типу[4].
Гіпотеза світу РНК заснована на здатності РНК запам'ятовувати, передавати та дублювати генетичну інформацію так само, як це робить ДНК. Окрім того, РНК має каталітичні властивості та може поводити себе як фермент — рибозим (РНК-ензим).
Гіпотеза світу РНК пояснює, як виник складний процес передачі інформації з ДНК на білок, який представлений трьома основними стадіями: транскрипцією — передачею інформації з ДНК на РНК; дозріванням РНК — видаленням зайвих послідовностей нуклеотидів, які не несуть інформації для синтезу білка; трансляцією — передачею інформації з дозрілої РНК на білок. У цій схемі існує один зворотний зв'язок, коли інформація передається з РНК на ДНК, але не відомо жодного випадку передачі інформації з білка на РНК чи ДНК[74].
Гіпотеза панспермії
Панспермія — космогонічна гіпотеза про появу життя на Землі в результаті перенесення з інших планет якихось «зародків життя».
Гіпотеза розумного задуму
Гіпотеза розумного задуму передбачає те, що усі форми життя на Землі та людина були створені вищою, надприродною силою — богом чи богами.
Розвиток життя на Землі
Поява життя на Землі
Перші живі організми сучасного типу з'явились на Землі понад 3,5 млрд років тому. Це були одноклітинні істоти з простою організацією клітини. Вважається, що вони були схожими на сучасних прокаріотів: у них було відсутнє ядро та мембранні органели. Предками перших організмів сучасного типу були, так звані, протобіонти — гіпотетичні істоти, які мали усі риси живих систем, однак, знаходились на нижчій сходинці організації[75]. Найдревніші беззаперечні скам'янілі останки одноклітинних істот датуються часом 3,5 млрд років тому[76], а геохімічні сліди живих істот знайдені у відкладах віком 3,8 млрд років тому[77], а також у відкладах віком 3,95 млрд років тому[78]
Розумне життя
Синтетичне життя
Синтетичне життя — це живі організми, повністю створені методами генної інженерії.
Синтетично-геномні організми
У 2010 році вперше створено організм — паразитичну бактерію Мікоплазму грибоподібну JCVI-syn1.0 (Mycoplasma mycoides JCVI-syn1.0) із цілком синтетичним геномом[79]. Кільцева ДНК-плазміда розміром 1,08 мега-пар нуклеотидів, була спроектована відповідно до оцифрованого геному Мікоплазми грибоподібної і синтезована хімічним шляхом. Синтетичну «хромосому» імплантовано у клітину іншого виду паразитичних бактерій — Мікоплазми козячої (Mycoplasma capricolum), в результаті отримано Мікоплазму грибоподібну JCVI-syn1.0 — повноцінно життєздатну бактерію, контрольовану синтетичним геномом.
Перші спроби створити геномсинтетичний евкаріотичний організм здійснені у 2011 році. Здійснено успішні експерименти з імплантації правого плеча 9-ї та лівого плеча 6-ї хромосом у живу клітину Дріжджів пивних .[80]
Генетично модифіковані організми
Генетично модифікованими організми — називають істот, генетичний матеріал яких був змінений шляхом, що не відбувається в природних умовах, на відміну від схрещування або природної рекомбінації. Відповідне формулювання затверджене в статті 2 Директиви 2001/18/ЄС Європейського парламенту та Ради від 12 березня 2001 року про вивільнення у довкілля генетично модифікованих організмів.[81].
Вимирання
Вимирання — це процес поступового або раптового зникнення групи таксонів чи видів, що призводить до скорочення біорізноманіття. Момент вимирання визначається зі смертю останнього представника виду. Понад 99 % живих істот, що мешкали на Землі впродовж усієї її історії, вимерли.
Упродовж геологічної історії Землі відбулося 5 глобальних вимирань[82]:
- Ордовицьке вимирання — відбулось у пізньому ордовицькому періоді палеозойської ери, приблизно 438 млн років тому. Внаслідок нього вимерло близько 100 відомих на сьогодні родин ордовицької фауни;
- Девонське вимирання — відбулось у пізньому девонському періоді палеозойської ери, приблизно 360 млн років тому. Внаслідок цього вимирання зникло близько 30 % усіх відомих родин девонської фауни;
- Пермське вимирання — відбулось у пізньому пермському періоді палеозойської ери, приблизно 250 млн років тому. Наслідком стало зникнення понад 50 % усіх родин пермської фауни та флори[83];
- Тріасове вимирання — відбулось у пізньому тріасовому періоді мезозойської ери, приблизно 220 млн років тому. Зникло понад 35 родин тріасової флори і фауни.
- Крейдове вимирання — відбулось у пізньому крейдовому періоді мезозойської ери, 65 мільйонів років тому. Внаслідок цього вимирання зникли 17 % родин фауни і флори.
Можливість позаземного життя
Марс
У наш час немає наукових доказів існування життя на Марсі. Хоча припускають, що воно там може бути. Ще до початку польотів на Марс він був першим кандидатом на виявлення там позаземного життя.
Непрямі докази існування життя на Марсі
Скам'янілі бактеріоподібні структури були знайдені у марсіанському метеориті ALH 84001[84]. Їхні розміри коливаються в межах 20—100 нанометрів. Метеорит ALH 84001 знайдено у грудні 1984 року в горах Алана, які є східним закінченням Трансантарктичного хребта, на Землі Королеви Вікторії, що в Антарктиді. Однак повторні дослідження структур метеориту ALH 84001 показують, що вони мають мінеральне походження, а не органічне[85].
15 січня 2009 року в онлайн-версії журналу «Наука» (Science) опубліковано статтю про виділення метану в атмосферу Марсу[86]. Встановлено, що частка газу метану у складі марсіанської атмосфери становить приблизно 10 мільярдних відсотка. У період марсіанських весни-літа, коли тане мерзлота, його кількість в атмосфері різко зростає, а з похолоданням — зменшується. Джерелом метану можуть виступати мікроорганізми — на Землі 90 % усього метану утворюється метаногенними мікроорганізмами.
Венера
На Венері життя можливе тільки в атмосфері — там є вода у вигляді пари і досі можуть існувати живі мікроорганізми.
Меркурій
На Меркурії життя можливе тільки для мікроорганізмів — вони живуть на полюсах, де є вода яка утворилася внаслідок зіткнення з кометою або астероїдом.
Церера
Церера — це найближча до Сонця карликова планета та найменша в сонячній системі. На Церері є вода і лід, і на думку вчених, незважаючи на наявність води і льоду, Церера може в майбутньому слугувати майданчиком для пілотованих посадок і місцем старту пілотованих польотів у далекий космос.
Європа (супутник)
Європа — це найменший галілеєвий супутник Юпітера, який дуже схожий на планету-океан, яка вкрита шаром води товщиною близько 90—100 км і замерзлою поверхнею. В океані спостерігаються припливи до 30 м, тепла від яких достатньо для підтримки частини океану в рідкому стані. Припускають, що підлідний океан має термальні джерела і поблизу них може існувати життя. Інші вчені вважають, що океан Європи «мертвий», оскільки містить багато отруйних речовин.
Джерела
- Queiroz, Kevin de; Cantino, Philip D.; Gauthier, Jacques (2020). International Code of Phylogenetic Nomenclature (PhyloCode) (англ.). CRC Press. ISBN 978-0-429-44632-0.
- http://www.slovnyk.net/index.php?swrd=життя%5Bнедоступне+посилання+з+липня+2019%5D Термін «Життя», Тлумачний словник українськоїмови;
- Schidlowski, M. 1988 A 3800-milion-year�isotopic record of life from carbon in sedimentary rocks. Nature 333, 313—318;
- Gilbert, Walter (February 1986). «The RNA World». Nature 319: 618. doi:10.1038/319618a0;
- http://www.daviddarling.info/encyclopedia/C/carbon-based_life.html;
- Ю. Одум Основы экологии. — М: «Мир», 1975. — 740 с;
- McKay, Chris P. (September 14, 2004). «Is Life—and How Do We Search for It in Other Worlds?». PLoS Biol. 2 (2(9)): 302. doi:10.1371/journal.pbio.0020302. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC516796/?tool=pubmed. Retrieved 2010-02-02
- Schrödinger, Erwin (1944). What is Life?. Cambridge University Press. ISBN 0-521-42708-8;
- Margulis, Lynn; Sagan, Dorion (1995). What is Life?. University of California Press. ISBN 0-520-22021-8;
- http://rulib.info/word/zhizn.html
- Thomas S. Duval Self-Awareness and Causal Attribution, p. 1, Springer, 2001
- Miller, Jason (2009). «Minding the Animals: Ethology and the Obsolescence of Left Humanism». American Chronicle.
- Povinelli, Daniel; de Veer, Monique; Gallup Jr., Gordon; Theall, Laura; van den Bos, Ruud (2003). «An 8-year longitudinal study of mirror self-recognition in chimpanzees (Pan troglodytes)». Neuropsychologia 41 (2): 229—334.
- Joshua M. Plotnik, Frans B.M. de Waal, and Diana Reiss (2006) Self-recognition in an Asian elephant. Proceedings of the National Academy of Sciences 103(45):17053-17057
- Prior, Helmut; Schwarz, Ariane; Güntürkün, Onur; De Waal, Frans (2008). «Mirror-Induced Behavior in the Magpie (Pica pica): Evidence of Self-Recognition». PLoS Biology (Public Library of Science) 6 (8)
- Stanley Coren. How dogs think.
- Archer, John (1992). Ethology and Human Development. Rowman & Littlefield.
- «Consciousness and the Symbolic Universe»
- Lovelock, James (2007). The Revenge of Gaia: Why the Earth Is Fighting Back — and How We Can Still Save Humanity. Santa Barbara CA: Allen Lane;
- Lovelock, James (2001). Homage to Gaia: The Life of an Independent Scientist. Oxford: Oxford University Press;
- Царик Й. В., Царик І. Й. Консорція як один із базових рівнів біологічного різноманіття // Карпатський регіон і проблеми сталого розвитку: Матеріали конф. – Рахів, 1998. – С. 303—304.
- Царик Й. В., Царик І. Й. Консорція як загальнобіотичне явище // Вісник Львів. ун-ту. Серія біологічна. – 2002. – вип. 28. – С. 163—169.
- Raven, Johnson Biology. — MGH, 2002. — 6 ed. — 1239 p.
- Richardson and Keuck, "Haeckel's ABC of evolution and development, " p. 516
- Alexandra Stechmann and Thomas Cavalier-Smith. The root of the eukaryote tree pinpointed. Current Biology Vol 13 No 17.
- Thomas Cavalier-Smith. Origin of the cell nucleus, mitosis and sex: roles of intracellular coevolution. Biology Direct Vol 5 No 7.
- Домен Нуклеїновмісні (Nucleacuea) http://www.biolib.cz/en/taxon/id282444/
- Домен Аміновмісні (Aminoacuea) http://www.biolib.cz/en/taxon/id282443/
- Tsagris EM, de Alba AE, Gozmanova M, Kalantidis K (September 2008). «Viroids». Cell. Microbiol. 10 (11): 2168 http://www3.interscience.wiley.com/cgi-bin/fulltext/121392557/PDFSTART%5Bнедоступне+посилання+з+квітня+2019%5D;
- Ping Xu and Marilyn J. Roossinck Cucumber Mosaic Virus D Satellite RNA-Induced Programmed Cell Death in Tomato // The Plant Cell, Vol. 12, 1079—1092, July 2000 http://www.plantcell.org/cgi/reprint/12/7/1079.pdf;
- H.E. Waterworth, M.E. Tousignant and J.M. Kaper A Lethal Disease of Tomato Experimentally Induced by RNA-5 Associated with Cucumber Mosaic Virus Isolated from Commelina from El Salvador // Phytopathology 68:561-566 (1978) http://www.apsnet.org/phyto/PDFS/1978/Phyto68n04_561.PDF Архівовано 16 травня 2009 у Wayback Machine.;
- Sinkovics, J; Harvath J, Horak A. (1998). «The Origin and evolution of viruses (a review)». Acta microbiologica et immunologica Hungarica (St. Joseph's Hospital, Department of Medicine, University of South Florida College of Medicine, Tampa, FL, USA.: Akademiai Kiado) 45(3-4): 349-90;
- Таксономічне положення Плазмід (Plasmides) http://www.biolib.cz/en/taxon/id282447/ ;
- Lipps G (editor). (2008). Plasmids: Current Research and Future Trends. Caister Academic Press;
- Gerdes K, Rasmussen PB, Molin S (1986). «Unique type of plasmid maintenance function: postsegregational killing of plasmid-free cells». Proc. Natl. Acad. Sci. U.S.A. 83 (10): 3116.
- Orgel, L.E. & Crick, F.H.C. (1980) Selfish DNA: the ultimate parasite. Nature, 284, 604—607;
- Lindquist S, Krobitsch S, Li L, Sondheimer N (February 2001). «Investigating protein conformation-based inheritance and disease in yeast». Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 356 (1406): 169-76
- Aguzzi A (January 2008). «Unraveling prion strains with cell biology and organic chemistry». Proceedings of the National Academy of Sciences of the United States of America 105 (1): 11-2;
- Brown DR, Qin K, Herms JW, et al. (1997). «The cellular prion protein binds copper in vivo». Nature 390 (6661): 684-7.
- Simonite T. Protists push animals aside in rule revamp// Nature. — 438. — (November 2005) (7064): 8-9.
- Костіков І. Ю., Джаган В. В., Демченко Е. М., Бойко О. А., Бойко В. Р., Романенко П. О. Ботаніка. Водорості та гриби. — Київ, 2004.
- Щербак Г. Й., Царичкова Д. Б., Вервес Ю. Г. Зоологія безхребетних. Том 3. — К.: Либідь, 1997
- Кучерявий В. П. Екологія. — Львів, 2001. — 500 °C.
- Fritz Schwerdtfeger Demökologie. Struktur und Dynamik tierischer Populationen, Band 2, 1968
- Реймерс Н. Ф. Экология (теории, законы, правила, принципы и гипотезы). М.: Журнал «Россия Молодая», 1994. — 367 с.
- Gold T. The Deep, Hot Biosphere 1992 Proceedings of the National Academy of Sciences volume 89 issue 13: 6045-6049
- A new bathymetric map of Lake Baikal. INTAS Project 99-1669. Ghent University, Ghent, Belgium; Consolidated Research Group on Marine Geosciences (CRG-MG), University of Barcelona, Spain; Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russian Federation; State Science Research Navigation-Hydrographic Institute of the Ministry of Defense, St. Petersburg, Russian Federation. Morphometric data.
- Tani, S. Continental shelf survey of Japan. Архів оригіналу за 12 травня 2013. Процитовано 24 грудня 2010.
- «NASA Satellite Detects Red Glow to Map Global Ocean Plant Health» NASA, 28 May 2009.
- Sarah Graham 2005 Bacteria Pull Off Photosynthesis sans Sunlight Scientific American
- http://www.currentresults.com/Environment-Facts/Plants-Animals/number-species.php
- H. Morlon H, Potts MD, Plotkin JB (2010) Inferring the Dynamics of Diversification: A Coalescent Approach. PLoS Biol 8(9): e1000493. doi:10.1371/journal.pbio.1000493 http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.1000493
- McPeek M. A, Brown J. M (2007) Clade age and not diversification rate explains species richness among animal taxa. Am Nat 169: 97–106.
- Ricklefs R (2007) Estimating diversification rates from phylogenetic information. Trends Ecol Evol 22: 601—610.
- Van Bocxlaer I, Loader S. P, Roelants K, Biju S. D, Menegon M, et al. (2010) Gradual adaptation toward a range-expansion phenotype initiated the global radiation of toads. Science 327: 679—682.
- Еволюція біосфери — в чому помилились біологи http://www.naturalist.if.ua/?p=120
- Raup, D. M. (1994). «The role of extinction in evolution». Proceedings of the National Academy of Sciences 91: 6758–6763.
- Альбер К. Дженсен. Живой мир океанов. — Санкт-Петербург, 1994
- The Great Plain of the Koukdjuak
- Taiga biological station
- http://www.worldwildlife.org/wildworld/profiles/terrestrial/pa/pa0601_full.html
- http://www.worldwildlife.org/wildworld/profiles/terrestrial/pa/pa0430_full.html
- http://www.naturalist.if.ua/?p=3776
- http://www.worldwildlife.org/wildworld/profiles/terrestrial/aa/aa0402_full.html
- http://www.worldwildlife.org/wildworld/profiles/terrestrial/aa/aa0403_full.html
- Cody, M.L. (1986). «Diversity, rarity, and conservation in Mediterranean-climate regions». In Soulé, M.E. Conservation biology: the science of scarcity and diversity. Sunderland, Massachusetts, USA.: Sinauer. pp. 122—152.
- Архівована копія. Архів оригіналу за 24 серпня 2011. Процитовано 1 листопада 2011.
- http://www.naturalist.if.ua/?p=3939
- Yeoman, G. (1989) Africa's Mountains of the Moon: Journeys to the Snowy Sources of the Nile. Elm Tree Books, London.
- Mizuno, Kazuharu (1998). «Succession Processes of Alpine Vegetation in Response to Glacial Fluctuations of Tyndall Glacier, Mt. Kenya, Kenya». Arctic and Alpine Research (INSTAAR, University of Colorado) 30 (4): 340—348.
- Sklenar, P.; P.M. Jorgensen (July 1999). Distribution Patterns of Paramo Plants in Ecuador. Journal of Biogeography 26 (4): 681—691. Retrieved 2 November 2011.
- Luteyn, James L. (1999). Páramos: A Checklist of Plant Diversity, Geographical Distribution, and Botanical Literature. Bronx, New York: New York Botanical Garden Press.
- Гіпотеза світу РНК або свіжий погляд на походження життя http://www.naturalist.if.ua/?p=145
- Zimmer C (August 2009). «Origins. On the origin of eukaryotes». Science 325 (5941): 666-8.
- Altermann, W. and Kazmierczak, J. (2003). «Archean microfossils: a reappraisal of early life on Earth». Res Microbiol 154 (9): 611-7.
- Mojzsis, S.J., Arrhenius, G., McKeegan, K.D., Harrison, T.M., Nutman, A.P. and Friend, C.R.L. (November 1996). «Evidence for life on Earth before 3,800 million years ago». Nature 384 (6604): 55-59.
- Японці виявили сліди життя, що існувала майже 4 млрд років тому
- Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, Algire MA, Benders GA, Montague MG, Ma L, Moodie MM, Merryman C, Vashee S, Krishnakumar R, Assad-Garcia N, Andrews-Pfannkoch C, Denisova EA, Young L, Qi ZQ, Segall-Shapiro TH, Calvey CH, Parmar PP, Hutchison CA 3rd, Smith HO, Venter JC. Creation of a bacterial cell controlled by a chemically synthesized genome. Science. 2010 Jul 2;329(5987):52-6. Epub 2010 May 20
- Dymond, J.S.; Richardson, S.M.; Coombes, C.E.; Babatz, T.; Muller, H.; Annalura, N.; Blake, W.J.; Schwerzmann, J.W.; Dai, J.; Lindstrom, D.L.; Boeke, A.C.; Gottschling, D.E.; Chandrasegaran, S.; Bader, J.S. and Boeke, J.D. (2011). Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature. Advance online publication, 14 September 2011. doi:10.1038/nature10403.
- Directive 2001/18/EC of the European Parliament and of the Council of 12 March 2001 on the deliberate release into the environment of genetically modified organisms
- Чи загрожує біосфері шосте вимирання? http://www.naturalist.if.ua/?p=6
- Пермське вимирання http://www.naturalist.if.ua/?p=2283
- Є життя на Марсі, чи немає життя на Марсі? http://www.naturalist.if.ua/?p=312
- Скам'янілих бактерій не було… http://www.naturalist.if.ua/?p=4585
- Метанова сенсація з Марсу. То життя на Марсі таки існує? http://www.naturalist.if.ua/?p=1179
Посилання
- Життя // Філософський енциклопедичний словник / В. І. Шинкарук (гол. редкол.) та ін. — Київ : Інститут філософії імені Григорія Сковороди НАН України : Абрис, 2002. — 742 с. — 1000 екз. — ББК 87я2. — ISBN 966-531-128-X.
- Життя // Українська мала енциклопедія : 16 кн. : у 8 т. / проф. Є. Онацький. — Накладом Адміністратури УАПЦ в Аргентині. — Буенос-Айрес, 1959. — Т. 2, кн. 4 : Літери Ж — Й. — С. 444-445. — 1000 екз.
- Статті категорії «Позаземне життя» з журналу «Станіславський натураліст»